Kukulka Tobias

No Thumbnail Available
Last Name
Kukulka
First Name
Tobias
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Significance of Langmuir circulation in upper ocean mixing : comparison of observations and simulations
    (American Geophysical Union, 2009-05-28) Kukulka, Tobias ; Plueddemann, Albert J. ; Trowbridge, John H. ; Sullivan, Peter P.
    Representing upper ocean turbulence accurately in models remains a great challenge for improving weather and climate projections. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that plays a key role in transferring momentum, heat, and mass in the oceanic surface layer. We present a direct comparison between observations and large eddy simulations, based on the wave-averaged Navier-Stokes equation, of an LC growth event. The evolution of cross-wind velocity variance and spatial scales, as well as mixed layer deepening are only consistent with simulations if LC effects are included in the model. Our results offer a validation of the large eddy simulation approach to understanding LC dynamics, and demonstrate the importance of LC in ocean surface layer mixing.
  • Article
    The influence of crosswind tidal currents on Langmuir circulation in a shallow ocean
    (American Geophysical Union, 2011-08-04) Kukulka, Tobias ; Plueddemann, Albert J. ; Trowbridge, John H. ; Sullivan, Peter P.
    Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that plays a key role in transferring momentum, heat, and mass in the oceanic surface layer. On the coastal shelves the largest-scale LC span the whole water column and thus couple the surface and bottom boundary layers and enhance turbulent mixing. Observations and large eddy simulations (LES) of a shallow coastal ocean demonstrate that these relatively large scale Langmuir cells are strongly influenced by crosswind tidal currents. Two mechanisms by which crosswind tidal shear may distort and disrupt Langmuir cells are proposed. The first mechanism involves cell shearing due to differential advection across the whole cell. For the second mechanism, middepth vertical LC currents advect sheared mean crosswind current, leading to the attraction of upwelling and downwelling regions, so that LC cells are unsustainable when both regions overlap. Scaling arguments indicate that LC cells are more susceptible to crosswind shear distortion for smaller LC surface velocity convergence and greater cell aspect ratio (vertical to horizontal LC scale), which is consistent with the results obtained from the observations and LES. These results imply that scaling of LC characteristics in a coastal ocean differs from that in the open ocean, which has important practical implications for parameterizing enhanced mixing due to LC.