Foote Kenneth G.

No Thumbnail Available
Last Name
Foote
First Name
Kenneth G.
ORCID
0000-0001-6873-9598

Search Results

Now showing 1 - 3 of 3
  • Article
    Further analysis of target strength measurements of Antarctic krill at 38 and 120 kHz : comparison with deformed cylinder model and inference of orientation distribution
    (Acoustical Society of America, 1993-05) Chu, Dezhang ; Foote, Kenneth G. ; Stanton, Timothy K.
    Data collected during the krill target strength experiment [J. Acoust. Soc. Am. 87, 16–24 (1990)] are examined in the light of a recent zooplankton scattering model where the elongated animals are modeled as deformed finite cylinders [J. Acoust. Soc. Am. 86, 691–705 (1989)]. Exercise of the model under assumption of an orientation distribution allows absolute predictions of target strength to be made at each frequency. By requiring that the difference between predicted and measured target strengths be a minimum in a least-squares sense, it is possible to infer the orientation distribution. This useful biological quantity was not obtainable in the previous analysis which involved the sphere scattering model.
  • Article
    Correcting acoustic measurements of scatterer density for extinction
    (Acoustical Society of America, 1990-09) Foote, Kenneth G.
    Extinction is sometimes a major problem in acoustic surveys of fish stocks, as it often occurs when the fish are concentrated and easiest to survey. The same may be true of certain macrozooplankton, such as krill in swarms. This study aims to describe how to correct single‐ping measurements of the vertical distribution of scatterer density for extinction. The general case is considered in which the aggregation density is variable and the mean backscattering and extinction cross sections vary with depth. By dividing the water column into a finite number of layers, with constant properties within each, a closed‐form mean‐field solution is derived. Methods of applying this to single‐ping echo records and the quality of the solution are both examined. Extinction is discussed vis‐à‐vis multiple scattering. Application of the technique in other areas, e.g., in remote probing of the atmosphere by lidar, is mentioned.
  • Article
    Acoustic sampling volume
    (Acoustical Society of America, 1991-08) Foote, Kenneth G.
    Knowledge of the acoustic sampling volume is necessary in many quantitative applications of acoustics. In general, the sampling volume is not merely a characteristic of the transmitting and receiving transducers, but also depends on the concentration and scattering properties of the target, the kind of signal processing performed on the echo, and the detection threshold. These dependences are stated explicitly in formulas for the sampling volume and a differential measure, the effective equivalent beam angle. Numerical examples are given for dispersed or dense concentrations of both point scatterers and directional fish scatterers. Application of theory to optical and other remote sensing techniques is mentioned.