Foote Kenneth G.

No Thumbnail Available
Last Name
Foote
First Name
Kenneth G.
ORCID
0000-0001-6873-9598

Search Results

Now showing 1 - 2 of 2
  • Article
    Further analysis of target strength measurements of Antarctic krill at 38 and 120 kHz : comparison with deformed cylinder model and inference of orientation distribution
    (Acoustical Society of America, 1993-05) Chu, Dezhang ; Foote, Kenneth G. ; Stanton, Timothy K.
    Data collected during the krill target strength experiment [J. Acoust. Soc. Am. 87, 16–24 (1990)] are examined in the light of a recent zooplankton scattering model where the elongated animals are modeled as deformed finite cylinders [J. Acoust. Soc. Am. 86, 691–705 (1989)]. Exercise of the model under assumption of an orientation distribution allows absolute predictions of target strength to be made at each frequency. By requiring that the difference between predicted and measured target strengths be a minimum in a least-squares sense, it is possible to infer the orientation distribution. This useful biological quantity was not obtainable in the previous analysis which involved the sphere scattering model.
  • Article
    Protocols for calibrating multibeam sonar
    (Acoustical Society of America, 2005-04) Foote, Kenneth G. ; Chu, Dezhang ; Hammar, Terence R. ; Baldwin, Kenneth C. ; Mayer, Larry A. ; Hufnagle, Lawrence C. ; Jech, J. Michael
    Development of protocols for calibrating multibeam sonar by means of the standard-target method is documented. Particular systems used in the development work included three that provide the water-column signals, namely the SIMRAD SM2000/90- and 200-kHz sonars and RESON SeaBat 8101 sonar, with operating frequency of 240 kHz. Two facilities were instrumented specifically for the work: a sea well at the Woods Hole Oceanographic Institution and a large, indoor freshwater tank at the University of New Hampshire. Methods for measuring the transfer characteristics of each sonar, with transducers attached, are described and illustrated with measurement results. The principal results, however, are the protocols themselves. These are elaborated for positioning the target, choosing the receiver gain function, quantifying the system stability, mapping the directionality in the plane of the receiving array and in the plane normal to the central axis, measuring the directionality of individual beams, and measuring the nearfield response. General preparations for calibrating multibeam sonars and a method for measuring the receiver response electronically are outlined. Advantages of multibeam sonar calibration and outstanding problems, such as that of validation of the performance of multibeam sonars as configured for use, are mentioned.