Glazer Lilah

No Thumbnail Available
Last Name
Glazer
First Name
Lilah
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Calcium phosphate mineralization is widely applied in crustacean mandibles
    (Nature Publishing Group, 2016-02-24) Bentov, Shmuel ; Aflalo, Eliahu D. ; Tynyakov, Jenny ; Sagi, Amir ; Glazer, Lilah
    Crustaceans, like most mineralized invertebrates, adopted calcium carbonate mineralization for bulk skeleton reinforcement. Here, we show that a major part of the crustacean class Malacostraca (which includes lobsters, crayfishes, prawns and shrimps) shifted toward the formation of calcium phosphate as the main mineral at specified locations of the mandibular teeth. In these structures, calcium phosphate is not merely co-precipitated with the bulk calcium carbonate but rather creates specialized structures in which a layer of calcium phosphate, frequently in the form of crystalline fluorapatite, is mounted over a calcareous “jaw”. From a functional perspective, the co-existence of carbonate and phosphate mineralization demonstrates a biomineralization system that provides a versatile route to control the physico-chemical properties of skeletal elements. This system enables the deposition of amorphous calcium carbonate, amorphous calcium phosphate, calcite and apatite at various skeletal locations, as well as combinations of these minerals, to form graded composites materials. This study demonstrates the widespread occurrence of the dual mineralization strategy in the Malacostraca, suggesting that in terms of evolution, this feature of phosphatic teeth did not evolve independently in the different groups but rather represents an early common trait.
  • Preprint
    Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior
    ( 2015-11) Glazer, Lilah ; Hahn, Mark E. ; Aluru, Neelakanteswar
    Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. The most toxic PCBs are the non-ortho-substituted ("dioxin-like") congeners that act through the aryl hydrocarbon receptor (AHR) pathway. In humans, perinatal exposure to dioxin-like PCBs is associated with neurodevelopmental toxicity in children. Yet, the full potential for later-life neurobehavioral effects that result from early-life low level exposure to dioxin-like PCBs is not well understood. The objective of this study was to determine the effects of developmental exposure to low levels of dioxin-like PCBs on early- and later-life behavioral phenotypes using zebrafish as a model system. We exposed zebrafish embryos to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2 nM) for 20 hours (4-24 hours post fertilization), and then reared them to adulthood in clean water. Locomotor activity was tested at two larval stages (7 and 14 days post fertilization). Adult fish were tested for anxiety-related behavior using the novel tank and shoaling assays. Adult behavioral assays were repeated several times on the same group of fish and effects on intra- and inter-trial habituation were determined. While there was no effect of PCB126 on larval locomotor activity in response to changes in light conditions, developmental exposure to PCB126 resulted in impaired short- and long-term habituation to a novel environment in adult zebrafish. Cyp1a induction was measured as an indicator for AHR activation. Despite high induction at early stages, cyp1a expression was not induced in the brains of developmentally exposed adult fish that showed altered behavior, suggesting that AHR was not activated at this stage. Our results demonstrate the effectiveness of the zebrafish model in detecting subtle and delayed behavioral effects resulting from developmental exposure to an environmental contaminant.
  • Preprint
    Hepatic metabolite profiling of polychlorinated biphenyl (PCB)-resistant and sensitive populations of Atlantic killifish (Fundulus heteroclitus)
    ( 2018-10-15) Glazer, Lilah ; Kido Soule, Melissa C. ; Longnecker, Krista ; Kujawinski, Elizabeth B. ; Aluru, Neelakanteswar
    Atlantic killifish inhabiting polluted sites along the east coast of the U.S. have evolved resistance to toxic effects of contaminants. One such contaminated site is the Acushnet River estuary, near New Bedford Harbor (NBH), Massachusetts, which is characterized by very high PCB concentrations in the sediments and in the tissues of resident killifish. Though killifish at this site appear to be thriving, the metabolic costs of survival in a highly contaminated environment are not well understood. In this study we compared the hepatic metabolite profiles of resistant (NBH) and sensitive populations (Scorton Creek (SC), Sandwich, MA) using a targeted metabolomics approach in which polar metabolites were extracted from adult fish livers and quantified. Our results revealed differences in the levels of several metabolites between fish from the two sites. The majority of these metabolites are associated with one-carbon metabolism, an important pathway that supports multiple physiological processes including DNA and protein methylation, nucleic acid biosynthesis and amino acid metabolism. We measured the gene expression of DNA methylation (DNA methyltransferase 1, dnmt1) and demethylation genes (Ten-Eleven Translocation (TET) genes) in the two populations, and observed lower levels of dnmt1 and higher levels of TET gene expression in the NBH livers, suggesting possible differences in DNA methylation profiles. Consistent with this, the two populations differed significantly in the levels of 5-methylcytosine and 5-hydroxymethylcytosine nucleotides. Overall, our results suggest that the unique hepatic metabolite signatures observed in NBH and SC reflect the adaptive mechanisms for survival in their respective habitats.
  • Preprint
    Early life exposure to low levels of AHR agonist PCB126 (3,3’,4,4’,5- pentachlorobiphenyl) reprograms gene expression in adult brain
    ( 2017-09) Aluru, Neelakanteswar ; Karchner, Sibel I. ; Glazer, Lilah
    Early life exposure to environmental chemicals can have long-term consequences that are not always apparent until later in life. We recently demonstrated that developmental exposure of zebrafish to low, non-embryotoxic levels of 3,3’,4,4’,5-pentachlorobiphenyl (PCB126) did not affect larval behavior, but caused changes in adult behavior. The objective of this study was to investigate the underlying molecular basis for adult behavioral phenotypes resulting from early life exposure to PCB126. We exposed zebrafish embryos to PCB126 during early development and measured transcriptional profiles in whole embryos, larvae and adult male brains using RNA-sequencing. Early life exposure to 0.3 nM PCB126 induced cyp1a transcript levels in 2-dpf embryos, but not in 5-dpf larvae, suggesting transient activation of aryl hydrocarbon receptor with this treatment. No significant induction of cyp1a was observed in the brains of adults exposed as embryos to PCB126. However, a total of 2209 and 1628 genes were differentially expressed in 0.3 nM and 1.2 nM PCB126-exposed groups, respectively. KEGG pathway analyses of upregulated genes in the brain suggest enrichment of calcium signaling, MAPK and notch signaling, and lysine degradation pathways. Calcium is an important signaling molecule in the brain and altered calcium homeostasis could affect neurobehavior. The downregulated genes in the brain were enriched with oxidative phosphorylation and various metabolic pathways, suggesting that the metabolic capacity of the brain is impaired. Overall, our results suggest that PCB exposure during sensitive periods of early development alters normal development of the brain by reprogramming gene expression patterns, which may result in alterations in adult behavior.