Karchner Sibel I.

No Thumbnail Available
Last Name
Karchner
First Name
Sibel I.
ORCID

Search Results

Now showing 1 - 7 of 7
Thumbnail Image
Article

The landscape of extreme genomic variation in the highly adaptable Atlantic killifish

2017-03-01 , Reid, Noah M. , Jackson, Craig E. , Gilbert, Don , Minx, Patrick , Montague, Michael J. , Hampton, Thomas H. , Helfrich, Lily W. , King, Benjamin L. , Nacci, Diane E. , Aluru, Neelakanteswar , Karchner, Sibel I. , Colbourne, John K. , Hahn, Mark E. , Shaw, Joseph R. , Oleksiak, Marjorie F. , Crawford, Douglas L. , Warren, Wesley C. , Whitehead, Andrew

Understanding and predicting the fate of populations in changing environments require knowledge about the mechanisms that support phenotypic plasticity and the adaptive value and evolutionary fate of genetic variation within populations. Atlantic killifish (Fundulus heteroclitus) exhibit extensive phenotypic plasticity that supports large population sizes in highly fluctuating estuarine environments. Populations have also evolved diverse local adaptations. To yield insights into the genomic variation that supports their adaptability, we sequenced a reference genome and 48 additional whole genomes from a wild population. Evolution of genes associated with cell cycle regulation and apoptosis is accelerated along the killifish lineage, which is likely tied to adaptations for life in highly variable estuarine environments. Genome-wide standing genetic variation, including nucleotide diversity and copy number variation, is extremely high. The highest diversity genes are those associated with immune function and olfaction, whereas genes under greatest evolutionary constraint are those associated with neurological, developmental, and cytoskeletal functions. Reduced genetic variation is detected for tight junction proteins, which in killifish regulate paracellular permeability that supports their extreme physiological flexibility. Low-diversity genes engage in more regulatory interactions than high-diversity genes, consistent with the influence of pleiotropic constraint on molecular evolution. High genetic variation is crucial for continued persistence of species given the pace of contemporary environmental change. Killifish populations harbor among the highest levels of nucleotide diversity yet reported for a vertebrate species, and thus may serve as a useful model system for studying evolutionary potential in variable and changing environments.

Thumbnail Image
Preprint

Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor

2014-12 , Grans, Johanna , Wassmur, Britt , Fernandez-Santoscoy, María , Zanette, Juliano , Woodin, Bruce R. , Karchner, Sibel I. , Nacci, Diane E. , Champlin, Denise , Jayaraman, Saro , Hahn, Mark E. , Stegeman, John J. , Celander, Malin C.

Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ~400 times higher, and the levels of non-dioxin-like PCBs ~3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on AhR2 or CYP1A in liver and gills of NBH fish. In NBH fish, but not in SC fish, there was increased expression of hepatic PXR, CYP3A and Pgp genes upon exposure to either of the two PCB congeners. However, basal PXR and Pgp mRNA levels in liver of NBH fish were significantly lower than in SC fish. A different pattern was seen in gills, where there were no differences in basal expression of these genes between the two populations. In SC fish, but not in NBH fish, there was increased expression of branchial PXR and CYP3A upon exposure to PCB126 and of CYP3A upon exposure to PCB153. The results suggest a difference between the two populations in non-AhR transcription factor signaling in liver and gills, and that this could involve killifish PXR. It also implies possible cross-regulatory interactions between that factor (presumably PXR) and AhR2 in liver of these fish.

Thumbnail Image
Preprint

Ryanodine receptor and FK506 binding protein 1 in the Atlantic killifish (Fundulus heteroclitus) : a phylogenetic and population-based comparison

2017-09 , Holland, Erika B. , Goldstone, Jared V. , Pessah, Isaac N. , Whitehead, Andrew , Reid, Noah M. , Karchner, Sibel I. , Hahn, Mark E. , Nacci, Diane E. , Clark, Bryan W. , Stegeman, John J.

Non-dioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine receptors (RyR), microsomal Ca2+ channels of broad significance. Teleost fish may be important models for NDL PCB neurotoxicity, and we used sequencing databases to characterize teleost RyR and FK506 binding protein 12 or 12.6 kDa (genes FKBP1A; FKBP1B), which promote NDL PCB-triggered Ca2+ dysregulation. Particular focus was placed on describing genes in the Atlantic killifish (Fundulus heteroclitus) genome and searching available RNA-sequencing datasets for single nucleotide variants (SNV) between PCB tolerant killifish from New Bedford Harbor (NBH) versus sensitive killifish from Scorton Creek (SC), MA. Consistent with the teleost whole genome duplication (tWGD), killifish have six RyR genes, corresponding to a and b paralogs of mammalian RyR1, 2 and 3. The presence of six RyR genes was consistent in all teleosts investigated including zebrafish. Killifish have four FKBP1; one FKBP1b and three FKBP1a named FKBP1aa, FKBP1ab, likely from the tWGD and a single gene duplicate FKBP1a3 suggested to have arisen in Atherinomorphae. The RyR and FKBP1 genes displayed tissue and developmental stage-specific mRNA expression, and the previously uncharacterized RyR3, herein named RyR3b, and all FKBP1 genes were prominent in brain. We identified a SNV in RyR3b encoding missense mutation E1458D. In NBH killifish, 57% were heterozygous and 28% were homozygous for this SNV, whereas almost all SC killifish (94%) lacked the variant (n≥39 per population). The outlined sequence differences between mammalian and teleost RyR and FKBP1 together with outlined population differences in SNV frequency may contribute to our understanding of NDL PCB neurotoxicity.

Thumbnail Image
Preprint

Fundulus as the premier teleost model in environmental biology : opportunities for new insights using genomics

2007-09-01 , Burnett, Karen G. , Bain, Lisa J. , Baldwin, William S. , Callard, Gloria V. , Cohen, Sarah , Di Giulio, Richard T. , Evans, David H. , Gomez-Chiarri, Marta , Hahn, Mark E. , Hoover, Cindi A. , Karchner, Sibel I. , Katoh, Fumi , MacLatchy, Deborah L. , Marshall, William S. , Meyer, Joel N. , Nacci, Diane E. , Oleksiak, Marjorie F. , Rees, Bernard B. , Singer, Thomas D. , Stegeman, John J. , Towle, David W. , Van Veld, Peter A. , Vogelbein, Wolfgang K. , Whitehead, Andrew , Winn, Richard N. , Crawford, Douglas L.

A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.

Thumbnail Image
Article

Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats

2014-01-14 , Reitzel, Adam M. , Karchner, Sibel I. , Franks, Diana G. , Evans, Brad R. , Nacci, Diane E. , Champlin, Denise , Vieira, Veronica M. , Hahn, Mark E.

The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other “dioxin-like compounds” (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway. Here we investigated gene diversity and evidence for positive selection at three AHR-related loci (AHR1, AHR2, AHRR) in F. heteroclitus by comparing alleles from seven locations ranging over 600 km along the northeastern US, including extremely polluted and reference estuaries, with a focus on New Bedford Harbor (MA, USA), a PCB Superfund site, and nearby reference sites. We identified 98 single nucleotide polymorphisms within three AHR-related loci among all populations, including synonymous and nonsynonymous substitutions. Haplotype distributions were spatially segregated and F-statistics suggested strong population genetic structure at these loci, consistent with previous studies showing strong population genetic structure at other F. heteroclitus loci. Genetic diversity at these three loci was not significantly different in contaminated sites as compared to reference sites. However, for AHR2 the New Bedford Harbor population had significant FST values in comparison to the nearest reference populations. Tests for positive selection revealed ten nonsynonymous polymorphisms in AHR1 and four in AHR2. Four nonsynonymous SNPs in AHR1 and three in AHR2 showed large differences in base frequency between New Bedford Harbor and its reference site. Tests for isolation-by-distance revealed evidence for non-neutral change at the AHR2 locus. Together, these data suggest that F. heteroclitus populations in reference and polluted sites have similar genetic diversity, providing no evidence for strong genetic bottlenecks for populations in polluted locations. However, the data provide evidence for genetic differentiation among sites, selection at specific nucleotides in AHR1 and AHR2, and specific AHR2 SNPs and haplotypes that are associated with the PCB-resistant phenotype in the New Bedford Harbor population. The results suggest that AHRs, and especially AHR2, may be important, recurring targets for selection in local adaptation to dioxin-like aromatic hydrocarbon contaminants.

Thumbnail Image
Preprint

Integrating monitoring and genetic methods to infer historical risks of PCBs and DDE to common and roseate terns nesting near the New Bedford Harbor Superfund site (Massachusetts, USA)

2016-09 , Nacci, Diane E. , Hahn, Mark E. , Karchner, Sibel I. , Jayaraman, Saro , Mostello, Carolyn , Miller, Kenneth M. , Blackwell, Carma Gilchrist , Nisbet, Ian C. T.

Common and roseate terns are migratory piscivorous seabirds with major breeding colonies within feeding range of the PCB-contaminated New Bedford Harbor (NBH, MA, USA) Superfund site. Our longitudinal study shows that before PCB discharges into NBH ceased (late 1970s), tern eggs had very high but variable PCB concentrations. But egg concentrations of PCBs as well as DDE, the degradation product of the ubiquitous global contaminant DDT, have since declined. Rate constants for temporal decline of PCB congeners in tern eggs varied inversely with log10KOW (n-octanol-water partition coefficient), shifting egg congener patterns away from those characterizing NBH sediment. To estimate the toxic effects on tern eggs of PCB dioxin-like congener (DLC) exposures, we extrapolated published laboratory data on common terns to roseate terns by characterizing genetic and functional similarities in species aryl-hydrocarbon receptors (AHRs), which mediate DLC sensitivity. Our assessment of contaminant risks suggests that terns breeding near NBH were exposed historically to toxic levels of PCBs and DDE; however, acute effects on tern egg development have become less likely since the 1970s. Our approach demonstrates how comparative genetics at target loci can effectively increase the range of inference for chemical risk assessments from tested to untested and untestable species.

Thumbnail Image
Preprint

The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish

2016-10 , Reid, Noah M. , Proestou, Dina A. , Clark, Bryan W. , Warren, Wesley C. , Colbourne, John K. , Shaw, Joseph R. , Karchner, Sibel I. , Hahn, Mark E. , Nacci, Diane E. , Oleksiak, Marjorie F. , Crawford, Douglas L. , Whitehead, Andrew

Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor-based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediating genes, and genes of connected signaling pathways, indicating complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish high nucleotide diversity has likely been a crucial substrate for selective sweeps to propel rapid adaptation.