Hobbie John E.

No Thumbnail Available
Last Name
Hobbie
First Name
John E.
ORCID

Search Results

Now showing 1 - 8 of 8
  • Article
    Microbes in nature are limited by carbon and energy : the starving-survival lifestyle in soil and consequences for estimating microbial rates
    (Frontiers Media, 2013-11-12) Hobbie, John E. ; Hobbie, Erik A.
    Understanding microbial transformations in soils is important for predicting future carbon sequestration and nutrient cycling. This review questions some methods of assessing one key microbial process, the uptake of labile organic compounds. First, soil microbes have a starving-survival life style of dormancy, arrested activity, and low activity. Yet they are very abundant and remain poised to completely take up all substrates that become available. As a result, dilution assays with the addition of labeled substrates cannot be used. When labeled substrates are transformed into 14CO2, the first part of the biphasic release follows metabolic rules and is not affected by the environment. As a consequence, when identical amounts of isotopically substrates are added to soils from different climate zones, the same percentage of the substrate is respired and the same half-life of the respired 14CO2 from the labeled substrate is estimated. Second, when soils are sampled by a variety of methods from taking 10 cm diameter cores to millimeter-scale dialysis chambers, amino acids (and other organic compounds) appear to be released by the severing of fine roots and mycorrhizal networks as well as from pressing or centrifuging treatments. As a result of disturbance as well as of natural root release, concentrations of individual amino acids of ~10 μM are measured. This contrasts with concentrations of a few nanomolar found in aquatic systems and raises questions about possible differences in the bacterial strategy between aquatic and soil ecosystems. The small size of the hyphae (2–10 μm diameter) and of the fine roots (0.2–2 mm diameter), make it very difficult to sample any volume of soil without introducing artifacts. Third, when micromolar amounts of labeled amino acids are added to soil, some of the isotope enters plant roots. This may be an artifact of the high micromolar concentrations applied.
  • Article
    Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter
    (Ecological Society of America, 2010-07) Rastetter, Edward B. ; Williams, Mathew ; Griffin, Kevin L. ; Kwiatkowski, Bonnie L. ; Tomasky, Gabrielle ; Potosnak, Mark J. ; Stoy, Paul C. ; Shaver, Gaius R. ; Stieglitz, Marc ; Hobbie, John E. ; Kling, George W.
    Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter performance, but it did not improve performance when used individually. The EnKF estimates of leaf area followed the expected springtime canopy phenology. However, there were also diel fluctuations in the leaf-area estimates; these are a clear indication of a model deficiency possibly related to vapor pressure effects on canopy conductance.
  • Article
    Bacterioplankton community shifts in an Arctic lake correlate with seasonal changes in organic matter source
    (American Society for Microbiology, 2003-04) Crump, Byron C. ; Kling, George W. ; Bahr, Michele ; Hobbie, John E.
    Seasonal shifts in bacterioplankton community composition in Toolik Lake, a tundra lake on the North Slope of Alaska, were related to shifts in the source (terrestrial versus phytoplankton) and lability of dissolved organic matter (DOM). A shift in community composition, measured by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes, occurred at 4°C in near-surface waters beneath seasonal ice and snow cover in spring. This shift was associated with an annual peak in bacterial productivity ([14C]leucine incorporation) driven by the large influx of labile terrestrial DOM associated with snow meltwater. A second shift occurred after the flux of terrestrial DOM had ended in early summer as ice left the lake and as the phytoplankton community developed. Bacterioplankton communities were composed of persistent populations present throughout the year and transient populations that appeared and disappeared. Most of the transient populations could be divided into those that were advected into the lake with terrestrial DOM in spring and those that grew up from low concentrations during the development of the phytoplankton community in early summer. Sequencing of DNA in DGGE bands demonstrated that most bands represented single ribotypes and that matching bands from different samples represented identical ribotypes. Bacteria were identified as members of globally distributed freshwater phylogenetic clusters within the {alpha}- and ß-Proteobacteria, the Cytophaga-Flavobacteria-Bacteroides group, and the Actinobacteria.
  • Article
    Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site
    (Springer, 2017-01-23) Hobbie, John E. ; Shaver, Gaius R. ; Rastetter, Edward B. ; Cherry, Jessica E. ; Goetz, Scott J. ; Guay, Kevin C. ; Gould, William A. ; Kling, George W.
    Long-term measurements of ecological effects of warming are often not statistically significant because of annual variability or signal noise. These are reduced in indicators that filter or reduce the noise around the signal and allow effects of climate warming to emerge. In this way, certain indicators act as medium pass filters integrating the signal over years-to-decades. In the Alaskan Arctic, the 25-year record of warming of air temperature revealed no significant trend, yet environmental and ecological changes prove that warming is affecting the ecosystem. The useful indicators are deep permafrost temperatures, vegetation and shrub biomass, satellite measures of canopy reflectance (NDVI), and chemical measures of soil weathering. In contrast, the 18-year record in the Greenland Arctic revealed an extremely high summer air-warming of 1.3°C/decade; the cover of some plant species increased while the cover of others decreased. Useful indicators of change are NDVI and the active layer thickness.
  • Article
    Microbial biogeography along an estuarine salinity gradient : combined influences of bacterial growth and residence time
    (American Society for Microbiology, 2004-03) Crump, Byron C. ; Hopkinson, Charles S. ; Sogin, Mitchell L. ; Hobbie, John E.
    Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([14C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and Actinobacteria. Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.
  • Article
    N-15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra
    (Ecological Society of America, 2006-04) Hobbie, John E. ; Hobbie, Erik A.
    When soil nitrogen is in short supply, most terrestrial plants form symbioses with fungi (mycorrhizae): hyphae take up soil nitrogen, transport it into plant roots, and receive plant sugars in return. In ecosystems, the transfers within the pathway fractionate nitrogen isotopes so that the natural abundance of N-15 in fungi differs from that in their host plants by as much as 12‰. Here we present a new method to quantify carbon and nitrogen fluxes in the symbiosis based on the fractionation against N-15 during transfer of nitrogen from fungi to plant roots. We tested this method, which is based on the mass balance of N-15, with data from arctic Alaska where the nitrogen cycle is well studied. Mycorrhizal fungi provided 61–86% of the nitrogen in plants; plants provided 8–17% of their photosynthetic carbon to the fungi for growth and respiration. This method of analysis avoids the disturbance of the soil–microbe–root relationship caused by collecting samples, mixing the soil, or changing substrate concentrations. This analytical technique also can be applied to other nitrogen-limited ecosystems, such as many temperate and boreal forests, to quantify the importance for terrestrial carbon and nitrogen cycling of nutrient transfers mediated by mycorrhizae at the plant–soil interface.
  • Article
    Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment
    (Ecological Society of America, 2007-06) Crump, Byron C. ; Adams, Heather E. ; Hobbie, John E. ; Kling, George W.
    Bacterioplankton community composition was compared across 10 lakes and 14 streams within the catchment of Toolik Lake, a tundra lake in Arctic Alaska, during seven surveys conducted over three years using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified rDNA. Bacterioplankton communities in streams draining tundra were very different than those in streams draining lakes. Communities in streams draining lakes were similar to communities in lakes. In a connected series of lakes and streams, the stream communities changed with distance from the upstream lake and with changes in water chemistry, suggesting inoculation and dilution with bacteria from soil waters or hyporheic zones. In the same system, lakes shared similar bacterioplankton communities (78% similar) that shifted gradually down the catchment. In contrast, unconnected lakes contained somewhat different communities (67% similar). We found evidence that dispersal influences bacterioplankton communities via advection and dilution (mass effects) in streams, and via inoculation and subsequent growth in lakes. The spatial pattern of bacterioplankton community composition was strongly influenced by interactions among soil water, stream, and lake environments. Our results reveal large differences in lake-specific and stream-specific bacterial community composition over restricted spatial scales (<10 km) and suggest that geographic distance and connectivity influence the distribution of bacterioplankton communities across a landscape.
  • Article
    Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests : 15N is the key signal
    (NRC Research Press, 2009-02-03) Hobbie, John E. ; Hobbie, Erik A. ; Drossman, Howard ; Conte, Maureen H. ; Weber, John C. ; Shamhart, Julee ; Weinrobe, Melissa
    Symbiotic fungi’s role in providing nitrogen to host plants is well-studied in tundra at Toolik Lake, Alaska, but little-studied in the adjoining boreal forest ecosystem. Along a 570 km north–south transect from the Yukon River to the North Slope of Alaska, the 15N content was strongly reduced in ectomycorrhizal and ericoid mycorrhizal plants including Betula, Salix, Picea mariana (P. Mill.) B.S.P., Picea glauca Moench (Voss), and ericaceous plants. Compared with the 15N content of soil, the foliage of nonmycorrhizal plants (Carex and Eriophorum) was unchanged, whereas content of the ectomycorrhizal fungi was very much higher (e.g., Boletaceae, Leccinum and Cortinarius). It is hypothesized that similar processes operate in tundra and boreal forest, both nitrogen-limited ecosystems: (i) mycorrhizal fungi break down soil polymers and take up amino acids or other nitrogen compounds; (ii) mycorrhizal fungi fractionate against 15N during production of transfer compounds; (iii) host plants are accordingly depleted in 15N; and (iv) mycorrhizal fungi are enriched in 15N. Increased N availability for plant roots or decreased light availability to understory plants may have decreased N allocation to mycorrhizal partners and increased δ15N by 3‰–4‰ for southern populations of Vaccinium vitis-idaea L. and Salix. Fungal biomass, measured as ergosterol, correlated strongly with soil organic matter and attained amounts similar to those in temperate forest soils.