McCorkle Daniel C.

No Thumbnail Available
Last Name
McCorkle
First Name
Daniel C.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Preprint
    The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals
    ( 2010-11-05) de Putron, Samantha J. ; McCorkle, Daniel C. ; Cohen, Anne L. ; Dillon, A. B.
    Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3 -) available for marine calcification, yet is simultaneously lowering the seawater pH and carbonate ion concentration ([CO3 2-]), and thus the saturation state of seawater with respect to aragonite (Ωar). We investigated the relative importance of [HCO3 -] versus [CO3 2-] for early calcification by new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species, Favia fragum and Porites astreoides. The polyps were reared over a range of Ωar values, which were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3 -] and [CO3 2-]) and by pCO2 elevation at constant alkalinity (increased [HCO3 -], decreased [CO3 2-]). Calcification after two weeks was quantified by weighing the complete skeleton (corallite) accreted by each polyp over the course of the experiment. Both species exhibited the same negative response to decreasing [CO3 2-] whether Ωar was lowered by acid-addition or by pCO2 elevation - calcification did not follow total DIC or [HCO3 -]. Nevertheless, the calcification response to decreasing [CO3 2-] was non-linear. A statistically significant decrease in calcification was only detected between Ωar = < 2.5 and Ωar = 1.1 – 1.5, where calcification of new recruits was reduced by 22 – 37 % per 1.0 decrease in Ωar. Our results differ from many previous studies that report a linear coral calcification response to OA, and from those showing that calcification increases with increasing [HCO3 -]. Clearly, the coral calcification response to OA is variable and complex. A deeper understanding of the biomineralization mechanisms and environmental conditions underlying these 3 variable responses is needed to support informed predictions about future OA impacts on corals and coral reefs.
  • Preprint
    An evaluation of staining techniques for marking daily growth in scleractinian corals
    ( 2012-12) Holcomb, Michael ; Cohen, Anne L. ; McCorkle, Daniel C.
    In situ skeletal markers have been widely used to quantify skeletal growth rates of scleractinian corals on sub-annual time-scales. Nevertheless, an evaluation of different techniques, both in terms of their efficacy and potential impacts on the growth process itself, has not been undertaken. Here the effects of exposure to four different dyes (alizarin, alizarin complexone, calcein, oxytetracycline) and isotope spikes (Ba and Sr) on the growth rates of scleractinian corals are compared. Oxytetracycline increased coral growth. Alizarin, alizarin complexone, calcein, and Sr and Ba isotope spikes had no significant effect on coral growth, but polyp extension appeared reduced during exposure to alizarin and alizarin complexone. Calcein provided a more intense fluorescent mark than either alizarin or alizarin complexone. Isotope spikes were challenging to locate using isotope ratio analysis techniques. Thus, calcein appears best suited for marking short-term calcification increments in corals, while a combination of alizarin or alizarin complexone and calcein may be useful for dual labeling experiments as there is little overlap in their fluorescence spectra.
  • Article
    Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater : insights into the biomineralization response to ocean acidification
    (American Geophysical Union, 2009-07-24) Cohen, Anne L. ; McCorkle, Daniel C. ; de Putron, Samantha J. ; Gaetani, Glenn A. ; Rose, Kathryn A.
    We reared primary polyps (new recruits) of the common Atlantic golf ball coral Favia fragum for 8 days at 25°C in seawater with aragonite saturation states ranging from ambient (Ω = 3.71) to strongly undersaturated (Ω = 0.22). Aragonite was accreted by all corals, even those reared in strongly undersaturated seawater. However, significant delays, in both the initiation of calcification and subsequent growth of the primary corallite, occurred in corals reared in treatment tanks relative to those grown at ambient conditions. In addition, we observed progressive changes in the size, shape, orientation, and composition of the aragonite crystals used to build the skeleton. With increasing acidification, densely packed bundles of fine aragonite needles gave way to a disordered aggregate of highly faceted rhombs. The Sr/Ca ratios of the crystals, measured by SIMS ion microprobe, increased by 13%, and Mg/Ca ratios decreased by 45%. By comparing these variations in elemental ratios with results from Rayleigh fractionation calculations, we show that the observed changes in crystal morphology and composition are consistent with a >80% decrease in the amount of aragonite precipitated by the corals from each “batch” of calcifying fluid. This suggests that the saturation state of fluid within the isolated calcifying compartment, while maintained by the coral at levels well above that of the external seawater, decreased systematically and significantly as the saturation state of the external seawater decreased. The inability of the corals in acidified treatments to achieve the levels of calcifying fluid supersaturation that drive rapid crystal growth could reflect a limit in the amount of energy available for the proton pumping required for calcification. If so, then the future impact of ocean acidification on tropical coral ecosystems may depend on the ability of individuals or species to overcome this limitation and achieve the levels of calcifying fluid supersaturation required to ensure rapid growth.
  • Article
    Diverse coral communities in naturally acidified waters of a Western Pacific reef
    (John Wiley & Sons, 2014-01-16) Shamberger, Kathryn E. F. ; Cohen, Anne L. ; Golbuu, Yimnang ; McCorkle, Daniel C. ; Lentz, Steven J. ; Barkley, Hannah C.
    Anthropogenic carbon dioxide emissions are acidifying the oceans, reducing the concentration of carbonate ions ([CO32−]) that calcifying organisms need to build and cement coral reefs. To date, studies of a handful of naturally acidified reef systems reveal depauperate communities, sometimes with reduced coral cover and calcification rates, consistent with results of laboratory-based studies. Here we report the existence of highly diverse, coral-dominated reef communities under chronically low pH and aragonite saturation state (Ωar). Biological and hydrographic processes change the chemistry of the seawater moving across the barrier reefs and into Palau's Rock Island bays, where levels of acidification approach those projected for the western tropical Pacific open ocean by 2100. Nevertheless, coral diversity, cover, and calcification rates are maintained across this natural acidification gradient. Identifying the combination of biological and environmental factors that enable these communities to persist could provide important insights into the future of coral reefs under anthropogenic acidification.