Fennel Katja

No Thumbnail Available
Last Name
Fennel
First Name
Katja
ORCID
0000-0003-3170-2331

Search Results

Now showing 1 - 3 of 3
  • Dataset
    DIC, TA, pH from R/V Pelican cruise conducted in the northern Gulf of Mexico in April and July 2017
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-01-28) Cai, Wei-Jun ; Rabalais, Nancy ; Fennel, Katja
    Dissolved inorganic carbon, total alkalinity and pH from R/V Pelican cruises conducted in the northern Gulf of Mexico (27.5 N, 30 N, 88 W, 94 W ) from April 5 to 16 and July 7 to 21 in 2017 For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/772513
  • Article
    Ideas and perspectives: biogeochemistry - some key foci for the future
    (European Geosciences Union, 2021-05-19) Bianchi, Thomas S. ; Anand, Madhur ; Bauch, Chris T. ; Canfield, Donald E. ; De Meester, Luc ; Fennel, Katja ; Groffman, Peter M. ; Pace, Michael L. ; Saito, Mak A. ; Simpson, Myrna J.
    Biogeochemistry has an important role to play in many environmental issues of current concern related to global change and air, water, and soil quality. However, reliable predictions and tangible implementation of solutions, offered by biogeochemistry, will need further integration of disciplines. Here, we refocus on how further developing and strengthening ties between biology, geology, chemistry, and social sciences will advance biogeochemistry through (1) better incorporation of mechanisms, including contemporary evolutionary adaptation, to predict changing biogeochemical cycles, and (2) implementing new and developing insights from social sciences to better understand how sustainable and equitable responses by society are achieved. The challenges for biogeochemists in the 21st century are formidable and will require both the capacity to respond fast to pressing issues (e.g., catastrophic weather events and pandemics) and intense collaboration with government officials, the public, and internationally funded programs. Keys to success will be the degree to which biogeochemistry can make biogeochemical knowledge more available to policy makers and educators about predicting future changes in the biosphere, on timescales from seasons to centuries, in response to climate change and other anthropogenic impacts. Biogeochemistry also has a place in facilitating sustainable and equitable responses by society.
  • Article
    Recommendations for plankton measurements on OceanSITES moorings with relevance to other observing sites
    (Frontiers Media, 2022-07-22) Boss, Emmanuel S. ; Waite, Anya M. ; Karstensen, Johannes ; Trull, Thomas W. ; Muller-Karger, Frank E. ; Sosik, Heidi M. ; Uitz, Julia ; Acinas, Silvia G. ; Fennel, Katja ; Berman-Frank, Ilana ; Thomalla, Sandy J. ; Yamazaki, Hidekatsu ; Batten, Sonia ; Gregori, Gerald ; Richardson, Anthony J. ; Wanninkhof, Rik
    Measuring plankton and associated variables as part of ocean time-series stations has the potential to revolutionize our understanding of ocean biology and ecology and their ties to ocean biogeochemistry. It will open temporal scales (e.g., resolving diel cycles) not typically sampled as a function of depth. In this review we motivate the addition of biological measurements to time-series sites by detailing science questions they could help address, reviewing existing technology that could be deployed, and providing examples of time-series sites already deploying some of those technologies. We consider here the opportunities that exist through global coordination within the OceanSITES network for long-term (climate) time series station in the open ocean. Especially with respect to data management, global solutions are needed as these are critical to maximize the utility of such data. We conclude by providing recommendations for an implementation plan.