Morgan Jennifer R.

No Thumbnail Available
Last Name
Morgan
First Name
Jennifer R.
ORCID
0000-0001-9915-6360

Search Results

Now showing 1 - 4 of 4
  • Article
    α-Synuclein dimers impair vesicle fission during clathrin-mediated synaptic vesicle recycling
    (Frontiers Media, 2017-12-11) Medeiros, Audrey T. ; Soll, Lindsey G. ; Tessari, Isabella ; Bubacco, Luigi ; Morgan, Jennifer R.
    α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV) trafficking. In Parkinson’s disease (PD) and several other neurodegenerative disorders, aberrant oligomerization and aggregation of α-synuclein lead to synaptic dysfunction and neurotoxicity. Despite evidence that α-synuclein oligomers are generated within neurons under physiological conditions, and that altering the balance of monomers and oligomers contributes to disease pathogenesis, how each molecular species of α-synuclein impacts SV trafficking is currently unknown. To address this, we have taken advantage of lamprey giant reticulospinal (RS) synapses, which are accessible to acute perturbations via axonal microinjection of recombinant proteins. We previously reported that acute introduction of monomeric α-synuclein inhibited SV recycling, including effects on the clathrin pathway. Here, we report the effects of α-synuclein dimers at synapses. Similar to monomeric α-synuclein, both recombinant α-synuclein dimers that were evaluated bound to small liposomes containing anionic lipids in vitro, but with reduced efficacy. When introduced to synapses, the α-synuclein dimers also induced SV recycling defects, which included a build up of clathrin-coated pits (CCPs) with constricted necks that were still attached to the plasma membrane, a phenotype indicative of a vesicle fission defect. Interestingly, both α-synuclein dimers induced longer necks on CCPs as well as complex, branching membrane tubules, which were distinct from the CCPs induced by a dynamin inhibitor, Dynasore. In contrast, monomeric α-synuclein induced a buildup of free clathrin-coated vesicles (CCVs), indicating an inhibition of clathrin-mediated endocytosis at a later stage during the clathrin uncoating process. Taken together, these data further support the conclusion that excess α-synuclein impairs SV recycling. The data additionally reveal that monomeric and dimeric α-synuclein produce distinct effects on clathrin-mediated endocytosis, predicting different molecular mechanisms. Understanding what these mechanisms are could help to further elucidate the normal functions of this protein, as well as the mechanisms underlying PD pathologies.
  • Article
    α-Synuclein-112 impairs synaptic vesicle recycling consistent with its enhanced membrane binding properties
    (Frontiers Media, 2020-05-29) Soll, Lindsey G. ; Eisen, Julia N. ; Vargas, Karina J. ; Medeiros, Audrey T. ; Hammar, Katherine M. ; Morgan, Jennifer R.
    Synucleinopathies are neurological disorders associated with α-synuclein overexpression and aggregation. While it is well-established that overexpression of wild type α-synuclein (α-syn-140) leads to cellular toxicity and neurodegeneration, much less is known about other naturally occurring α-synuclein splice isoforms. In this study we provide the first detailed examination of the synaptic effects caused by one of these splice isoforms, α-synuclein-112 (α-syn-112). α-Syn-112 is produced by an in-frame excision of exon 5, resulting in deletion of amino acids 103–130 in the C-terminal region. α-Syn-112 is upregulated in the substantia nigra, frontal cortex, and cerebellum of parkinsonian brains and higher expression levels are correlated with susceptibility to Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA). We report here that α-syn-112 binds strongly to anionic phospholipids when presented in highly curved liposomes, similar to α-syn-140. However, α-syn-112 bound significantly stronger to all phospholipids tested, including the phosphoinositides. α-Syn-112 also dimerized and trimerized on isolated synaptic membranes, while α-syn-140 remained largely monomeric. When introduced acutely to lamprey synapses, α-syn-112 robustly inhibited synaptic vesicle recycling. Interestingly, α-syn-112 produced effects on the plasma membrane and clathrin-mediated synaptic vesicle endocytosis that were phenotypically intermediate between those caused by monomeric and dimeric α-syn-140. These findings indicate that α-syn-112 exhibits enhanced phospholipid binding and oligomerization in vitro and consequently interferes with synaptic vesicle recycling in vivo in ways that are consistent with its biochemical properties. This study provides additional evidence suggesting that impaired vesicle endocytosis is a cellular target of excess α-synuclein and advances our understanding of potential mechanisms underlying disease pathogenesis in the synucleinopathies.
  • Article
    Hsc70 ameliorates the vesicle recycling defects caused by excess alpha-synuclein at synapses
    (Society for Neuroscience, 2020-01-15) Banks, Susan M. L. ; Medeiros, Audrey T. ; McQuillan, Molly ; Busch, David J. ; Ibarraran-Viniegra, Ana Sofia ; Sousa, Rui ; Lafer, Eileen M. ; Morgan, Jennifer R.
    α-Synuclein overexpression and aggregation are linked to Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and several other neurodegenerative disorders. In addition to effects in the cell body, α-synuclein accumulation occurs at presynapses where the protein is normally localized. While it is generally agreed that excess α-synuclein impairs synaptic vesicle trafficking, the underlying mechanisms are unknown. We show here that acute introduction of excess human α-synuclein at a classic vertebrate synapse, the lamprey reticulospinal (RS) synapse, selectively impaired the uncoating of clathrin-coated vesicles (CCVs) during synaptic vesicle recycling, leading to an increase in endocytic intermediates and a severe depletion of synaptic vesicles. Furthermore, human α-synuclein and lamprey γ-synuclein both interact in vitro with Hsc70, the chaperone protein that uncoats CCVs at synapses. After introducing excess α-synuclein, Hsc70 availability was reduced at stimulated synapses, suggesting Hsc70 sequestration as a possible mechanism underlying the synaptic vesicle trafficking defects. In support of this hypothesis, increasing the levels of exogenous Hsc70 along with α-synuclein ameliorated the CCV uncoating and vesicle recycling defects. These experiments identify a reduction in Hsc70 availability at synapses, and consequently its function, as the mechanism by which α-synuclein induces synaptic vesicle recycling defects. To our knowledge, this is the first report of a viable chaperone-based strategy for reversing the synaptic vesicle trafficking defects associated with excess α-synuclein, which may be of value for improving synaptic function in PD and other synuclein-linked diseases.
  • Article
    Synuclein regulates synaptic vesicle clustering and docking at a vertebrate synapse
    (Frontiers Media, 2021-11-26) Fouke, Kaitlyn E. ; Wegman, M. Elizabeth ; Weber, Sarah A. ; Brady, Emily B. ; Román-Vendrell, Cristina ; Morgan, Jennifer R.
    Neurotransmission relies critically on the exocytotic release of neurotransmitters from small synaptic vesicles (SVs) at the active zone. Therefore, it is essential for neurons to maintain an adequate pool of SVs clustered at synapses in order to sustain efficient neurotransmission. It is well established that the phosphoprotein synapsin 1 regulates SV clustering at synapses. Here, we demonstrate that synuclein, another SV-associated protein and synapsin binding partner, also modulates SV clustering at a vertebrate synapse. When acutely introduced to unstimulated lamprey reticulospinal synapses, a pan-synuclein antibody raised against the N-terminal domain of α-synuclein induced a significant loss of SVs at the synapse. Both docked SVs and the distal reserve pool of SVs were depleted, resulting in a loss of total membrane at synapses. In contrast, antibodies against two other abundant SV-associated proteins, synaptic vesicle glycoprotein 2 (SV2) and vesicle-associated membrane protein (VAMP/synaptobrevin), had no effect on the size or distribution of SV clusters. Synuclein perturbation caused a dose-dependent reduction in the number of SVs at synapses. Interestingly, the large SV clusters appeared to disperse into smaller SV clusters, as well as individual SVs. Thus, synuclein regulates clustering of SVs at resting synapses, as well as docking of SVs at the active zone. These findings reveal new roles for synuclein at the synapse and provide critical insights into diseases associated with α-synuclein dysfunction, such as Parkinson’s disease.