Key Robert M.

No Thumbnail Available
Last Name
Key
First Name
Robert M.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Correction to “Using altimetry to help explain patchy changes in hydrographic carbon measurements”
    (American Geophysical Union, 2009-12-09) Rodgers, Keith B. ; Key, Robert M. ; Gnanadesikan, Anand ; Sarmiento, Jorge L. ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Dunne, John P. ; Glover, David M. ; Ishida, Akio ; Ishii, Masao ; Jacobson, Andrew R. ; Monaco, Claire Lo ; Maier-Reimer, Ernst ; Mercier, Herlé ; Metzl, Nicolas ; Perez, Fiz F. ; Rios, Aida F. ; Wanninkhof, Rik ; Wetzel, Patrick ; Winn, Christopher D. ; Yamanaka, Yasuhiro
  • Article
    Supercooled Southern Ocean waters
    (American Geophysical Union, 2020-10-09) Haumann, F. Alexander ; Moorman, Ruth ; Riser, Stephen C. ; Smedsrud, Lars H. ; Maksym, Ted ; Wong, Annie P. S. ; Wilson, Earle A. ; Drucker, Robert S. ; Talley, Lynne D. ; Johnson, Kenneth S. ; Key, Robert M. ; Sarmiento, Jorge L.
    In cold polar waters, temperatures sometimes drop below the freezing point, a process referred to as supercooling. However, observational challenges in polar regions limit our understanding of the spatial and temporal extent of this phenomenon. We here provide observational evidence that supercooled waters are much more widespread in the seasonally ice‐covered Southern Ocean than previously reported. In 5.8% of all analyzed hydrographic profiles south of 55°S, we find temperatures below the surface freezing point (“potential” supercooling), and half of these have temperatures below the local freezing point (“in situ” supercooling). Their occurrence doubles when neglecting measurement uncertainties. We attribute deep coastal‐ocean supercooling to melting of Antarctic ice shelves and surface‐induced supercooling in the seasonal sea‐ice region to wintertime sea‐ice formation. The latter supercooling type can extend down to the permanent pycnocline due to convective sinking plumes—an important mechanism for vertical tracer transport and water‐mass structure in the polar ocean.
  • Preprint
    Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms
    ( 2005-07-29) Orr, James C. ; Fabry, Victoria J. ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Feely, Richard A. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Key, Robert M. ; Lindsay, Keith ; Maier-Reimer, Ernst ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Rodgers, Keith B. ; Sabine, Christopher L. ; Sarmiento, Jorge L. ; Schlitzer, Reiner ; Slater, Richard D. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew
    The surface ocean is everywhere saturated with respect to calcium carbonate (CaCO3). Yet increasing atmospheric CO2 reduces ocean pH and carbonate ion concentrations [CO32−] and thus the level of saturation. Reduced saturation states are expected to affect marine calcifiers even though it has been estimated that all surface waters will remain saturated for centuries. Here we show, however, that some surface waters will become undersaturated within decades. When atmospheric CO2 reaches 550 ppmv, in year 2050 under the IS92a business-as-usual scenario, Southern Ocean surface waters begin to become undersaturated with respect to aragonite, a metastable form of CaCO3. By 2100 as atmospheric CO2 reaches 788 ppmv, undersaturation extends throughout the entire Southern Ocean (< 60°S) and into the subarctic Pacific. These changes will threaten high-latitude aragonite secreting organisms including cold-water corals, which provide essential fish habitat, and shelled pteropods, an abundant food source for marine predators.
  • Article
    Evaluation of ocean carbon cycle models with data-based metrics
    (American Geophysical Union, 2004-04-02) Matsumoto, K. ; Sarmiento, Jorge L. ; Key, Robert M. ; Aumont, Olivier ; Bullister, John L. ; Caldeira, Ken ; Campin, J.-M. ; Doney, Scott C. ; Drange, Helge ; Dutay, J.-C. ; Follows, Michael J. ; Gao, Y. ; Gnanadesikan, Anand ; Gruber, Nicolas ; Ishida, Akio ; Joos, Fortunat ; Lindsay, Keith ; Maier-Reimer, Ernst ; Marshall, John C. ; Matear, Richard J. ; Monfray, Patrick ; Mouchet, Anne ; Najjar, Raymond G. ; Plattner, Gian-Kasper ; Schlitzer, Reiner ; Slater, Richard D. ; Swathi, P. S. ; Totterdell, Ian J. ; Weirig, Marie-France ; Yamanaka, Yasuhiro ; Yool, Andrew ; Orr, James C.
    New radiocarbon and chlorofluorocarbon-11 data from the World Ocean Circulation Experiment are used to assess a suite of 19 ocean carbon cycle models. We use the distributions and inventories of these tracers as quantitative metrics of model skill and find that only about a quarter of the suite is consistent with the new data-based metrics. This should serve as a warning bell to the larger community that not all is well with current generation of ocean carbon cycle models. At the same time, this highlights the danger in simply using the available models to represent the state-of-the-art modeling without considering the credibility of each model.
  • Article
    Using altimetry to help explain patchy changes in hydrographic carbon measurements
    (American Geophysical Union, 2009-09-18) Rodgers, Keith B. ; Key, Robert M. ; Gnanadesikan, Anand ; Sarmiento, Jorge L. ; Aumont, Olivier ; Bopp, Laurent ; Doney, Scott C. ; Dunne, John P. ; Glover, David M. ; Ishida, Akio ; Ishii, Masao ; Jacobson, Andrew R. ; Monaco, Claire Lo ; Maier-Reimer, Ernst ; Mercier, Herlé ; Metzl, Nicolas ; Perez, Fiz F. ; Rios, Aida F. ; Wanninkhof, Rik ; Wetzel, Patrick ; Winn, Christopher D. ; Yamanaka, Yasuhiro
    Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).