Lerczak James A.

No Thumbnail Available
Last Name
Lerczak
First Name
James A.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Subtidal salinity and velocity in the Hudson River estuary : observations and modeling
    (American Meteorological Society, 2008-04) Ralston, David K. ; Geyer, W. Rockwell ; Lerczak, James A.
    A tidally and cross-sectionally averaged model based on the temporal evolution of the quasi-steady Hansen and Rattray equations is applied to simulate the salinity distribution and vertical exchange flow along the Hudson River estuary. The model achieves high skill at hindcasting salinity and residual velocity variation during a 110-day period in 2004 covering a wide range of river discharges and tidal forcing. The approach is based on an existing model framework that has been modified to improve model skill relative to observations. The external forcing has been modified to capture meteorological time-scale variability in salinity, stratification, and residual velocity due to sea level fluctuations at the open boundary and along-estuary wind stress. To reflect changes in vertical mixing due to stratification, the vertical mixing coefficients have been modified to use the bottom boundary layer height rather than the water depth as an effective mixing length scale. The boundary layer parameterization depends on the tidal amplitude and the local baroclinic pressure gradient through the longitudinal Richardson number, and improves the model response to spring–neap variability in tidal amplitude during periods of high river discharge. Finally, steady-state model solutions are evaluated for both the Hudson River and northern San Francisco Bay over a range of forcing conditions. Agreement between the model and scaling of equilibrium salinity intrusions lends confidence that the approach is transferable to other estuaries, despite significant differences in bathymetry. Discrepancies between the model results and observations at high river discharge are indicative of limits at which the formulation begins to fail, and where an alternative approach that captures two-layer dynamics would be more appropriate.
  • Dataset
    Hudson River estuary 2004 field experiment
    (Woods Hole Oceanograpic Institution, 2023-08-08) Lerczak, James A. ; Ralston, David K. ; Geyer, W. Rockwell ; Conley, Margaret M.
    This dataset includes data from moorings and shipboard observations in the Hudson River estuary during the spring and summer of 2004. The moorings were deployed in the thalweg at 7 sites for 108 days and included a combination of bottom temperature, conductivity, and pressure measurements as well as upward-looking ADCPs. Each mooring site also had near-surface temperature and conductivity measurements. Shipboard CTD surveys were carried out along the estuary on 7 days just after the deployment and just before the recovery of the moorings.
  • Dataset
    Hudson River estuary 2002 field experiment: moorings
    (Woods Hole Oceanographic Institution, 2023-09-20) Geyer, W. Rockwell ; Chant, Robert J. ; Houghton, Robert ; Lerczak, James A. ; Hunter, Elias J. ; Conley, Margaret
    This dataset includes data from moorings deployed in the Hudson River estuary during the spring of 2002. The moorings were deployed at Spuyten Duyvil for 43 days and included a cross-channel array of temperature and conductivity sensors as well as 4 upward-looking ADCPs and 2 pressure sensors flanking the channel.