Trowbridge John H.

No Thumbnail Available
Last Name
Trowbridge
First Name
John H.
ORCID

Search Results

Now showing 1 - 6 of 6
  • Article
    Measurements of momentum and heat transfer across the air–sea interface
    (American Meteorological Society, 2008-05) Gerbi, Gregory P. ; Trowbridge, John H. ; Edson, James B. ; Plueddemann, Albert J. ; Terray, Eugene A. ; Fredericks, Janet J.
    This study makes direct measurements of turbulent fluxes in the mixed layer in order to close heat and momentum budgets across the air–sea interface and to assess the ability of rigid-boundary turbulence models to predict mean vertical gradients beneath the ocean’s wavy surface. Observations were made at 20 Hz at nominal depths of 2.2 and 1.7 m in 16 m of water. A new method is developed to estimate the fluxes and the length scales of dominant flux-carrying eddies from cospectra at frequencies below the wave band. The results are compared to independent estimates of those quantities, with good agreement between the two sets of estimates. The observed temperature gradients were smaller than predicted by standard rigid-boundary closure models, consistent with the suggestion that wave breaking and Langmuir circulation increase turbulent diffusivity in the upper ocean. Similarly, the Monin–Obukhov stability function ϕh was smaller in the authors’ measurements than the stability functions used in rigid-boundary applications of the Monin–Obukhov similarity theory. The dominant horizontal length scales of flux-carrying turbulent eddies were found to be consistent with observations in the bottom boundary layer of the atmosphere and from laboratory experiments in three ways: 1) in statically unstable conditions, the eddy sizes scaled linearly with distance to the boundary; 2) in statically stable conditions, length scales decreased with increasing downward buoyancy flux; and 3) downwind length scales were larger than crosswind length scales.
  • Dataset
    Martha's Vineyard Coastal Observatory 2021
    (Woods Hole Oceanographic Institution, 2022-06-24) Cinquino, Eve ; Batchelder, Sidney ; Fredericks, Janet J. ; Sisson, John D. ; Faluotico, Stephen M. ; Popenoe, Hugh ; Sandwith, Zoe O. ; Crockford, E. Taylor ; Peacock, Emily E. ; Shalapyonok, Alexi ; Sosik, Heidi M. ; Kirincich, Anthony R. ; Edson, James B. ; Trowbridge, John H.
    Martha's Vineyard Coastal Observatory (MVCO) is a leading research and engineering facility operated by Woods Hole Oceanographic Institution. MVCO has been collecting ocean and atmospheric data at 3 sites on and near Martha's Vineyard since 2001. A meteorological mast (met mast) on South Beach in Edgartown, MA has collected atmospheric data since May 31 2001. An Air Sea Interaction Tower (ASIT) has been collecting atmospheric and subsurface oceanic data since August 5, 2004. A seafloor node (12m node) has been collecting oceanic data from the seafloor since June 14, 2001. This dataset encompasses the core data (wind speed and direction, air pressure, temperature and relative humidity, water temperature and salinity, and wave data) that has been collected during this period. To learn more about the facility and see additional data collected during short term deployments, visit the MVCO Website (https://mvco.whoi.edu/).
  • Dataset
    Martha’s Vineyard Coastal Observatory
    (Woods Hole Oceanographic Institution, 2021-10-15) Cinquino, Eve ; Batchelder, Sidney ; Fredericks, Janet J. ; Sisson, John D. ; Faluotico, Stephen M. ; Popenoe, Hugh ; Sandwith, Zoe O. ; Crockford, E. Taylor ; Peacock, Emily E. ; Shalapyonok, Alexi ; Sosik, Heidi M. ; Kirincich, Anthony R. ; Edson, James B. ; Trowbridge, John H.
    Martha's Vineyard Coastal Observatory (MVCO) is a leading research and engineering facility operated by Woods Hole Oceanographic Institution. MVCO has been collecting ocean and atmospheric data at 3 sites on and near Martha's Vineyard since 2001. A meteorological mast (met mast) on South Beach in Edgartown, MA has collected atmospheric data since May 31 2001. An Air Sea Interaction Tower (ASIT) has been collecting atmospheric and subsurface oceanic data since August 5, 2004. A seafloor node (12m node) has been collecting oceanic data from the seafloor since June 14, 2001. This dataset encompasses the core data (wind speed and direction, air pressure, temperature and relative humidity, water temperature and salinity, and wave data) that has been collected during this period. To learn more about the facility and see additional data collected during short term deployments, visit the MVCO Website (https://mvco.whoi.edu/).
  • Dataset
    Martha's Vineyard Coastal Observatory 2022
    (Woods Hole Oceanographic Institution, 2023-01-31) Cinquino, Eve ; Batchelder, Sidney ; Fredericks, Janet J. ; Sisson, John D. ; Faluotico, Stephen M. ; Popenoe, Hugh ; Sandwith, Zoe O. ; Crockford, E. Taylor ; Peacock, Emily E. ; Shalapyonok, Alexi ; Sosik, Heidi M. ; Kirincich, Anthony R. ; Edson, James B. ; Trowbridge, John H.
    Martha's Vineyard Coastal Observatory (MVCO) is a leading research and engineering facility operated by Woods Hole Oceanographic Institution. MVCO has been collecting ocean and atmospheric data at 3 sites on and near Martha's Vineyard since 2001. A meteorological mast (met mast) on South Beach in Edgartown, MA has collected atmospheric data since May 31 2001. An Air Sea Interaction Tower (ASIT) has been collecting atmospheric and subsurface oceanic data since August 5, 2004. A seafloor node (12m node) has been collecting oceanic data from the seafloor since June 14, 2001. This dataset encompasses the core data (wind speed and direction, air pressure, temperature and relative humidity, water temperature and salinity, and wave data) that has been collected during this period. To learn more about the facility and see additional data collected during short term deployments, visit the MVCO Website (https://mvco.whoi.edu/).
  • Article
    The coupled boundary layers and air-sea transfer experiment in low winds
    (American Meteorological Society, 2007-03) Edson, James B. ; Crawford, Timothy ; Crescenti, Jerry ; Farrar, J. Thomas ; Frew, Nelson M. ; Gerbi, Gregory P. ; Plueddemann, Albert J. ; Trowbridge, John H. ; Weller, Robert A. ; Williams, Albert J.
    The Office of Naval Research's Coupled Boundary Layers and Air–Sea Transfer (CBLAST) program is being conducted to investigate the processes that couple the marine boundary layers and govern the exchange of heat, mass, and momentum across the air–sea interface. CBLAST-LOW was designed to investigate these processes at the low-wind extreme where the processes are often driven or strongly modulated by buoyant forcing. The focus was on conditions ranging from negligible wind stress, where buoyant forcing dominates, up to wind speeds where wave breaking and Langmuir circulations play a significant role in the exchange processes. The field program provided observations from a suite of platforms deployed in the coastal ocean south of Martha's Vineyard. Highlights from the measurement campaigns include direct measurement of the momentum and heat fluxes on both sides of the air–sea interface using a specially constructed Air–Sea Interaction Tower (ASIT), and quantification of regional oceanic variability over scales of O (1–104 mm) using a mesoscale mooring array, aircraft-borne remote sensors, drifters, and ship surveys. To our knowledge, the former represents the first successful attempt to directly and simultaneously measure the heat and momentum exchange on both sides of the air–sea interface. The latter provided a 3D picture of the oceanic boundary layer during the month-long main experiment. These observations have been combined with numerical models and direct numerical and large-eddy simulations to investigate the processes that couple the atmosphere and ocean under these conditions. For example, the oceanic measurements have been used in the Regional Ocean Modeling System (ROMS) to investigate the 3D evolution of regional ocean thermal stratification. The ultimate goal of these investigations is to incorporate improved parameterizations of these processes in coupled models such as the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) to improve marine forecasts of wind, waves, and currents.
  • Dataset
    Martha's Vineyard Coastal Observatory 2023
    (Woods Hole Oceanographic Institution, 2024-10-28) Cinquino, Eve ; Batchelder, Sidney ; Fredericks, Janet J. ; Sisson, John D. ; Faluotico, Stephen M. ; Popenoe, Hugh ; Sandwith, Zoe O. ; Crockford, E. Taylor ; Peacock, Emily E. ; Shalapyonok, Alexi ; Sosik, Heidi M. ; Kirincich, Anthony R. ; Edson, James B. ; Trowbridge, John H.
    Martha's Vineyard Coastal Observatory (MVCO) is a leading research and engineering facility operated by Woods Hole Oceanographic Institution. MVCO has been collecting ocean and atmospheric data at 3 sites on and near Martha's Vineyard since 2001. A meteorological mast (met mast) on South Beach in Edgartown, MA collected atmospheric data from May 31, 2001 to Dec 18, 2023. An Air Sea Interaction Tower (ASIT) has been collecting atmospheric and subsurface oceanic data since August 5, 2004. A seafloor node (12m node) collected oceanic data from the seafloor from June 14, 2001 to September 5, 2018. This dataset encompasses the core data (wind speed and direction, air pressure, temperature and relative humidity, water temperature and salinity, and wave data) that has been collected during this period. To learn more about the facility and see additional data collected during short term deployments, visit the MVCO Website (https://mvco.whoi.edu/).