Staudigel Hubert

No Thumbnail Available
Last Name
Staudigel
First Name
Hubert
ORCID

Search Results

Now showing 1 - 7 of 7
Thumbnail Image
Article

Age systematics of two young en echelon Samoan volcanic trails

2011-07-29 , Koppers, Anthony A. P. , Russell, Jamie A. , Roberts, Jed , Jackson, Matthew G. , Konter, Jasper G. , Wright, Dawn J. , Staudigel, Hubert , Hart, Stanley R.

The volcanic origin of the Samoan archipelago can be explained by one of three models, specifically, by a hot spot forming over a mantle plume, by lithospheric extension resulting from complex subduction tectonics in the region, or by a combination of these two processes, either acting sequentially or synchronously. In this paper, we present results of 36 high-resolution 40Ar/39Ar incremental heating age analyses for the initial (submarine) phase of Samoan volcanoes, ranging from 13.2 Ma for the westernmost Samoan seamounts to 0.27 Ma in the eastern Samoan volcanic province. Taken as a whole, our new age data point to a hot spot origin for the shield-building volcanism in the Samoan lineament, whereby seamounts younger than 5 Ma are consistent with a model of constant 7.1 cm/yr plate motion, analogous to GPS measurements for the Pacific Plate in this region. This makes our new 40Ar/39Ar ages of the submarine basalts all older compared to recent absolute plate motion (APM) models by Wessel et al. (2008), which are based on the inversion of twelve independent seamount trails in the Pacific relative to a fixed reference frame of hot spots and which predict faster plate motions of around 9.3 cm/yr in the vicinity of Samoa. The Samoan ages are also older than APM models by Steinberger et al. (2004) taking into account the motion of hot spots in the Pacific alone or globally. The age systematics become more complicated toward the younger end of the Samoan seamount trail, where its morphology bifurcates into two en echelon subtracks, termed the VAI and MALU trends, as they emanate from two eruptive centers at Vailulu'u and Malumalu seamount, respectively. Spaced ∼50 km apart, the VAI and MALU trends have distinct geochemical characters and independent but overlapping linear 40Ar/39Ar age progressions since 1.5 Ma. These phenomena are not unique to Samoa, as they have been observed at the Hawaiian hot spot, and can be attributed to a geochemical zoning in its underlying mantle source or plume. Moreover, the processes allowing for the emergence of two distinct eruptive centers in the Samoan archipelago, the stepped offset of these subtracks, and their slight obliqueness with respect to the overall seamount trail orientation may very well be controlled by local tectonics, stresses, and extension, also causing the rejuvenated volcanism on the main islands of Savai'i, Upolu, and Tutuila since 0.4 Ma.

Thumbnail Image
Preprint

The return of subducted continental crust in Samoan lavas

2007-08-04 , Jackson, Matthew G. , Hart, Stanley R. , Koppers, Anthony A. P. , Staudigel, Hubert , Konter, Jasper G. , Blusztajn, Jerzy S. , Kurz, Mark D. , Russell, Jamie A.

Substantial quantities of terrigenous sediments are known to enter the mantle at subduction zones, but little is known about their fate in the mantle. Subducted sediment may be entrained in buoyantly upwelling plumes and returned to the earth’s surface at hotspots, but the proportion of recycled sediment in the mantle is small and clear examples of recycled sediment in hotspot lavas are rare. We report here remarkably enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures (up to 0.720830 and 0.512285, respectively) in Samoan lavas from three dredge locations on the underwater flanks of Savai’i island, Western Samoa. The submarine Savai’i lavas represent the most extreme 87Sr/86Sr isotope compositions reported for ocean island basalts (OIBs) to date. The data are consistent with the presence of a recycled sediment component (with a composition similar to upper continental crust, or UCC) in the Samoan mantle. Trace element data show similar affinities with UCC—including exceptionally low Ce/Pb and Nb/U ratios—that complement the enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures. The geochemical evidence from the new Samoan lavas radically redefines the composition of the EM2 (enriched mantle 2) mantle endmember, and points to the presence of an ancient recycled UCC component in the Samoan plume.

Thumbnail Image
Article

Hydrothermal venting at Vailulu'u Seamount : the smoking end of the Samoan chain

2004-02-10 , Staudigel, Hubert , Hart, Stanley R. , Koppers, Anthony A. P. , Constable, C. , Workman, Rhea K. , Kurz, Mark D. , Baker, Edward T.

The summit crater of Vailulu'u Seamount, the youngest volcano in the Samoan chain, hosts an active hydrothermal system with profound impact on the ocean water column inside and around its crater (2 km wide and 407 m deep at a 593 m summit depth). The turbidity of the ocean water reaches 1.4 NTU, values that are higher than in any other submarine hydrothermal system. The water is enriched in hydrothermal Mn (3.8 ppb) and 3He (1 × 10−11 cc/g) and we measured water temperature anomalies near the crater floor up to 0.2°C. The hydrothermal system shows complex interactions with the ocean currents around Vailulu'u that include tidally-modulated vertical motions of about 40–50 m, and replenishment of waters into the crater through breaches in the upper half of the crater wall. Inside and outside potential density gradients suggest that hydrothermal venting exports substantial amounts of water from the crater (1.3 ± 0.2 × 108 m3/day), which is in good agreement with fluxes obtained from a tracer release experiment inside the crater of Vailulu'u (0.8 × 108 m3/day [Hart et al., 2003]). This mass flux, in combination with the differences in the inside and outside crater temperature, yields a power output of around 760 megawatts, the equivalent of 20–100 MOR black smokers. The Mn output of 300 kg/day is approximately ten times the output of a single black smoker.

Thumbnail Image
Article

Seamount sciences : quo vadis?

2010-03 , Staudigel, Hubert , Koppers, Anthony A. P. , Lavelle, J. William , Pitcher, Tony J. , Shank, Timothy M.

Seamounts are fascinating natural ocean laboratories that inform us about fundamental planetary and ocean processes, ocean ecology and fisheries, and hazards and metal resources. The more than 100,000 large seamounts are a defining structure of global ocean topography and biogeography, and hundreds of thousands of smaller ones are distributed throughout every ocean on Earth.

Thumbnail Image
Article

Defining the word “seamount”

2010-03 , Staudigel, Hubert , Koppers, Anthony A. P. , Lavelle, J. William , Pitcher, Tony J. , Shank, Timothy M.

The term seamount has been defined many times (e.g., Menard, 1964; Wessel, 2001; Schmidt and Schmincke, 2000; Pitcher et al., 2007; International Hydrographic Organization, 2008; Wessel et al., 2010) but there is no “generally accepted” definition. Instead, most definitions serve the particular needs of a discipline or a specific paper.

Thumbnail Image
Article

Vailulu’u Seamount

2010-03 , Koppers, Anthony A. P. , Staudigel, Hubert , Hart, Stanley R. , Young, Craig M. , Konter, Jasper G.

Vailulu’u seamount is an active underwater volcano that marks the end of the Samoan hotspot trail.

Thumbnail Image
Article

Vailulu'u Seamount, Samoa : life and death on an active submarine volcano

2006-04-13 , Staudigel, Hubert , Hart, Stanley R. , Pile, Adele , Bailey, Bradley E. , Baker, Edward T. , Brooke, Sandra , Connelly, Douglas P. , Haucke, Lisa , German, Christopher R. , Hudson, Ian , Jones, Daniel O. B. , Koppers, Anthony A. P. , Konter, Jasper G. , Lee, Ray , Pietsch, Theodore W. , Tebo, Bradley M. , Templeton, Alexis S. , Zierenberg, Robert , Young, Craig M.

Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu'u seamount. Nafanua grew from the 1,000-m-deep crater floor in <4 years and could reach the sea surface within decades. Vents fill Vailulu'u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu'u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids.