Bower Amy S.

No Thumbnail Available
Last Name
Bower
First Name
Amy S.
ORCID
0000-0003-0902-4984

Search Results

Now showing 1 - 20 of 43
  • Article
    The scientific and societal uses of global measurements of subsurface velocity
    (Frontiers Media, 2019-07-24) Szuts, Zoltan B. ; Bower, Amy S. ; Donohue, Kathleen A. ; Girton, James B. ; Hummon, Julia M. ; Katsumata, Katsuro ; Lumpkin, Rick ; Ortner, Peter B. ; Phillips, Helen E. ; Rossby, H. Thomas ; Shay, Lynn Keith ; Sun, Charles ; Todd, Robert E.
    Ocean velocity defines ocean circulation, yet the available observations of subsurface velocity are under-utilized by society. The first step to address these concerns is to improve visibility of and access to existing measurements, which include acoustic sampling from ships, subsurface float drifts, and measurements from autonomous vehicles. While multiple programs provide data publicly, the present difficulty in finding, understanding, and using these data hinder broader use by managers, the public, and other scientists. Creating links from centralized national archives to project specific websites is an easy but important way to improve data discoverability and access. A further step is to archive data in centralized databases, which increases usage by providing a common framework for disparate measurements. This requires consistent data standards and processing protocols for all types of velocity measurements. Central dissemination will also simplify the creation of derived products tailored to end user goals. Eventually, this common framework will aid managers and scientists in identifying regions that need more sampling and in identifying methods to fulfill those demands. Existing technologies are capable of improving spatial and temporal sampling, such as using ships of opportunity or from autonomous platforms like gliders, profiling floats, or Lagrangian floats. Future technological advances are needed to fill sampling gaps and increase data coverage.
  • Article
    Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea
    (John Wiley & Sons, 2014-02-25) Chen, Changsheng ; Li, Ruixiang ; Pratt, Lawrence J. ; Limeburner, Richard ; Beardsley, Robert C. ; Bower, Amy S. ; Jiang, Houshuo ; Abualnaja, Yasser ; Xu, Qichun ; Lin, Huichan ; Liu, Xuehai ; Lan, Jian ; Kim, Taewan
    Surface drifters released in the central Red Sea during April 2010 detected a well-defined anticyclonic eddy around 23°N. This eddy was ∼45–60 km in radius, with a swirl speed up to ∼0.5 m/s. The eddy feature was also evident in monthly averaged sea surface height fields and in current profiles measured on a cross-isobath, shipboard CTD/ADCP survey around that region. The unstructured-grid, Finite-Volume Community Ocean Model (FVCOM) was configured for the Red Sea and process studies were conducted to establish the conditions necessary for the eddy to form and to establish its robustness. The model was capable of reproducing the observed anticyclonic eddy with the same location and size. Diagnosis of model results suggests that the eddy can be formed in a Red Sea that is subject to seasonally varying buoyancy forcing, with no wind, but that its location and structure are significantly altered by wind forcing, initial distribution of water stratification and southward coastal flow from the upstream area. Momentum analysis indicates that the flow field of the eddy was in geostrophic balance, with the baroclinic pressure gradient forcing about the same order of magnitude as the surface pressure gradient forcing.
  • Article
    Observed deep cyclonic eddies around Southern Greenland
    (American Meteorological Society, 2021-10-01) Zou, Sijia ; Bower, Amy S. ; Furey, Heather H. ; Pickart, Robert S. ; Houpert, Loïc ; Holliday, Naomi Penny
    Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f > 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1 at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region.
  • Article
    Dominant circulation patterns of the deep Gulf of Mexico
    (American Meteorological Society, 2018-03-01) Perez-Brunius, Paula ; Furey, Heather H. ; Bower, Amy S. ; Hamilton, Peter ; Candela, Julio ; García-Carrillo, Paula ; Leben, Robert
    The large-scale circulation of the bottom layer of the Gulf of Mexico is analyzed, with special attention to the historically least studied western basin. The analysis is based on 4 years of data collected by 158 subsurface floats parked at 1500 and 2500 m and is complemented with data collected by current meter moorings in the western basin during the same period. Three main circulation patterns stand out: a cyclonic boundary current, a cyclonic gyre in the abyssal plain, and the very high eddy kinetic energy observed in the eastern Gulf. The boundary current and the cyclonic gyre appear as distinct features, which interact in the western tip of the Yucatan shelf. The persistence and continuity of the boundary current is addressed. Although high variability is observed, the boundary flow serves as a pathway for water to travel around the western basin in approximately 2 years. An interesting discovery is the separation of the boundary current over the northwestern slope of the Yucatan shelf. The separation and retroflection of the along-slope current appears to be a persistent feature and is associated with anticyclonic eddies whose genesis mechanism remains to be understood. As the boundary flow separates, it feeds into the westward flow of the deep cyclonic gyre. The location of this gyre—named the Sigsbee Abyssal Gyre—coincides with closed geostrophic contours, so eddy–topography interaction via bottom form stresses may drive this mean flow. The contribution to the cyclonic vorticity of the gyre by modons traveling under Loop Current eddies is discussed.
  • Article
    Factors governing the deep ventilation of the Red Sea
    (John Wiley & Sons, 2015-11-19) Papadopoulos, Vassilis P. ; Zhan, Peng ; Sofianos, Sarantis S. ; Raitsos, Dionysios E. ; Qurban, Mohammed ; Abualnaja, Yasser ; Bower, Amy S. ; Kontoyiannis, Harilaos ; Pavlidou, Alexandra ; Asharaf, T. T. Mohamed ; Zarokanellos, Nikolaos ; Hoteit, Ibrahim
    A variety of data based on hydrographic measurements, satellite observations, reanalysis databases, and meteorological observations are used to explore the interannual variability and factors governing the deep water formation in the northern Red Sea. Historical and recent hydrographic data consistently indicate that the ventilation of the near-bottom layer in the Red Sea is a robust feature of the thermohaline circulation. Dense water capable to reach the bottom layers of the Red Sea can be regularly produced mostly inside the Gulfs of Aqaba and Suez. Occasionally, during colder than usual winters, deep water formation may also take place over coastal areas in the northernmost end of the open Red Sea just outside the Gulfs of Aqaba and Suez. However, the origin as well as the amount of deep waters exhibit considerable interannual variability depending not only on atmospheric forcing but also on the water circulation over the northern Red Sea. Analysis of several recent winters shows that the strength of the cyclonic gyre prevailing in the northernmost part of the basin can effectively influence the sea surface temperature (SST) and intensify or moderate the winter surface cooling. Upwelling associated with periods of persistent gyre circulation lowers the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme heat loss by the sea surface. In addition, the occasional persistence of the cyclonic gyre feeds the surface layers of the northern Red Sea with nutrients, considerably increasing the phytoplankton biomass.
  • Article
    Equilibration and circulation of Red Sea Outflow water in the western Gulf of Aden
    (American Meteorological Society, 2005-11) Bower, Amy S. ; Johns, William E. ; Fratantoni, David M. ; Peters, Hartmut
    Hydrographic, direct velocity, and subsurface float observations from the 2001 Red Sea Outflow Experiment (REDSOX) are analyzed to investigate the gravitational and dynamical adjustment of the Red Sea Outflow Water (RSOW) where it is injected into the open ocean in the western Gulf of Aden. During the winter REDSOX cruise, when outflow transport was large, several intermediate-depth salinity maxima (product waters) were formed from various bathymetrically confined branches of the outflow plume, ranging in depth from 400 to 800 m and in potential density from 27.0 to 27.5 σθ, a result of different mixing intensity along each branch. The outflow product waters were not dense enough to sink to the seafloor during either the summer or winter REDSOX cruises, but analysis of previous hydrographic and mooring data and results from a one-dimensional plume model suggest that they may be so during wintertime surges of strong outflow currents, or about 20% of the time during winter. Once vertically equilibrated in the Gulf of Aden, the shallowest RSOW was strongly influenced by mesoscale eddies that swept it farther into the gulf. The deeper RSOW was initially more confined by the walls of the Tadjura Rift, but eventually it escaped from the rift and was advected mainly southward along the continental slope. There was no evidence of a continuous boundary undercurrent of RSOW similar to the Mediterranean Undercurrent in the Gulf of Cadiz. This is explained by considering 1) the variability in outflow transport and 2) several different criteria for separation of a jet at a sharp corner, which indicate that the outflow currents should separate from the boundary where they are injected into the gulf.
  • Article
    A Deep Water Dispersion Experiment in the Gulf of Mexico
    (American Geophysical Union, 2021-09-18) Meunier, Thomas ; Pérez-Brunius, Paula ; Rodríguez Outerelo, Javier ; García-Carrillo, Paula ; Ronquillo-Mendez, Argelia ; Furey, Heather H. ; Ramsey, Andree L. ; Bower, Amy S.
    The Deep Water Horizon oil spill dramatically impacted the Gulf of Mexico from the seafloor to the surface. While dispersion of contaminants at the surface has been extensively studied, little is known about deep water dispersion properties. This study describes the results of the Deep Water Dispersion Experiment (DWDE), which consisted of the release of surface drifters and acoustically tracked RAFOS floats drifting at 300 and 1,500 dbar in the Gulf of Mexico. We show that surface diffusivity is elevated and decreases with depth: on average, diffusivity at 1,500 dbar is 5 times smaller than at the surface, suggesting that the dispersion of contaminants at depth is a significantly slower process than at the surface. This study also examines the turbulent regimes driving the dispersion, although conflicting evidences and large uncertainties do not allow definitive conclusions. At all depths, while the growth of dispersion and kurtosis with time supports the possibility of an exponential regime at very short time scales, indicating that early dispersion is nonlocal, finite size Lyapunov exponents support the hypothesis of local dispersion, suggesting that eddies of size comparable to the initial separation (6 km), may dominate the early dispersion. At longer time scales, the quadratic growth of dispersion is indicative of a ballistic regime, where a mean shear flow would be the dominating process. Examination of the along- and across-bathymetry components of float velocities supports the idea that boundary currents could be the source for this shear dispersion.
  • Article
    The dynamical structure of a warm core ring as I\inferred from glider observations and along-track altimetry
    (MDPI, 2021-06-23) Meunier, Thomas ; Pallás-Sanz, Enric ; de Marez, Charly ; Pérez, Juan ; Tenreiro, Miguel ; Ruiz-Angulo, Angel ; Bower, Amy S.
    This study investigates the vertical structure of the dynamical properties of a warm-core ring in the Gulf of Mexico (Loop Current ring) using glider observations. We introduce a new method to correct the glider’s along-track coordinate, which is, in general, biased by the unsteady relative movements of the glider and the eddy, yielding large errors on horizontal derivatives. Here, we take advantage of the synopticity of satellite along-track altimetry to apply corrections on the glider’s position by matching in situ steric height with satellite-measured sea surface height. This relocation method allows recovering the eddy’s azimuthal symmetry, precisely estimating the rotation axis position, and computing reliable horizontal derivatives. It is shown to be particularly appropriate to compute the eddy’s cyclo-geostrophic velocity, relative vorticity, and shear strain, which are otherwise out of reach when using the glider’s raw traveled distance as a horizontal coordinate. The Ertel potential vorticity (PV) structure of the warm core ring is studied in details, and we show that the PV anomaly is entirely controlled by vortex stretching. Sign reversal of the PV gradient across the water column suggests that the ring might be baroclinically unstable. The PV gradient is also largely controlled by gradients of the vortex stretching term. We also show that the ring’s total energy partition is strongly skewed, with available potential energy being 3 times larger than kinetic energy. The possible impact of this energy partition on the Loop Current rings longevity is also discussed.
  • Article
    Author correction : Meridional heat transport variability induced by mesoscale processes in the subpolar North Atlantic
    (Nature Publishing Group, 2018-06-14) Zhao, Jian ; Bower, Amy S. ; Yang, Jiayan ; Lin, Xiaopei
  • Article
    Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification
    (American Meteorological Society, 2014-02) de Jong, Marieke F. ; Bower, Amy S. ; Furey, Heather H.
    Between 25 September 2007 and 28 September 2009, a heavily instrumented mooring was deployed in the Labrador Sea, offshore of the location where warm-core, anticyclonic Irminger rings are formed. The 2-year time series offers insight into the vertical and horizontal structure of newly formed Irminger rings and their heat and salt transport into the interior basin. In 2 years, 12 Irminger rings passed by the mooring. Of these, 11 had distinct properties, while 1 anticyclone likely passed the mooring twice. Eddy radii (11–35 km) were estimated using the dynamic height signal of the anticyclones (8–18 cm) together with the observed velocities. The anticyclones show a seasonal cycle in core properties when observed (1.9°C in temperature and 0.07 in salinity at middepth) that has not been described before. The temperature and salinity are highest in fall and lowest in spring. Cold, fresh caps, suggested to be an important source of freshwater, were seen in spring but were almost nonexistent in fall. The heat and freshwater contributions by the Irminger rings show a large spread (from 12 to 108 MJ m−2 and from −0.5 to −4.7 cm, respectively) for two reasons. First, the large range of radii leads to large differences in transported volume. Second, the seasonal cycle leads to changes in heat and salt content per unit volume. This implies that estimates of heat and freshwater transport by eddies should take the distribution of eddy properties into account in order to accurately assess their contribution to the restratification.
  • Article
    Iceland-Scotland Overflow Water transport variability through the Charlie-Gibbs Fracture Zone and the impact of the North Atlantic Current
    (John Wiley & Sons, 2017-09-01) Bower, Amy S. ; Furey, Heather H.
    The Charlie-Gibbs Fracture Zone (CGFZ), a deep and wide gap in the Mid-Atlantic Ridge near 52°N, is a gateway between the eastern and western subpolar regions for the Atlantic Meridional Overturning Circulation (AMOC). In 2010–2012, an eight-mooring array of current meters and temperature/salinity sensors was installed across the CGFZ between 500 m and the sea floor to measure the mean transport of westward-flowing Iceland-Scotland Overflow Water (ISOW) and investigate the impact of the eastward-flowing North Atlantic Current (NAC) on ISOW transport variability. The 22 month record mean ISOW transport through the CGFZ, −1.7 ± 0.5 Sv (95% confidence interval), is 30% lower than the previously published estimate based on 13 months of current-only measurements, −2.4 ± 1.2 Sv. The latter mean estimate may have been biased high due to the lack of continuous salinity measurements, although the two estimates are not statistically different due to strong mesoscale variability in both data sets. Empirical Orthogonal Function analysis and maps of satellite-derived absolute dynamic topography show that weak westward ISOW transport events and eastward reversals are caused by northward meanders of the NAC, with its deep-reaching eastward velocities. These results add to growing evidence that a significant fraction of ISOW exits the Iceland Basin by routes other than the CGFZ.
  • Article
    Overturning in the Subpolar North Atlantic Program : a new international ocean observing system
    (American Meteorological Society, 2017-04-24) Lozier, M. Susan ; Bacon, Sheldon ; Bower, Amy S. ; Cunningham, Stuart A. ; de Jong, Marieke Femke ; de Steur, Laura ; deYoung, Brad ; Fischer, Jürgen ; Gary, Stefan F. ; Greenan, Blair J. W. ; Heimbach, Patrick ; Holliday, Naomi Penny ; Houpert, Loïc ; Inall, Mark E. ; Johns, William E. ; Johnson, Helen L. ; Karstensen, Johannes ; Li, Feili ; Lin, Xiaopei ; Mackay, Neill ; Marshall, David P. ; Mercier, Herlé ; Myers, Paul G. ; Pickart, Robert S. ; Pillar, Helen R. ; Straneo, Fiamma ; Thierry, Virginie ; Weller, Robert A. ; Williams, Richard G. ; Wilson, Christopher G. ; Yang, Jiayan ; Zhao, Jian ; Zika, Jan D.
    For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
  • Article
    Seasonal overturning circulation in the Red Sea : 2. Winter circulation
    (John Wiley & Sons, 2014-04-14) Yao, Fengchao ; Hoteit, Ibrahim ; Pratt, Lawrence J. ; Bower, Amy S. ; Kohl, Armin ; Gopalakrishnan, Ganesh ; Rivas, David
    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.
  • Article
    Reconstructing the three-dimensional structure of loop current rings from satellite altimetry and in situ data using the gravest empirical modes method
    (MDPI, 2022-08-25) Meunier, Thomas ; Pérez-Brunius, Paula ; Bower, Amy S.
    The three-dimensional structure of Gulf of Mexico’s warm-core rings, detaching from the Loop Current, is investigated using satellite altimetry and a large set of ARGO float profiles. Reconstruction of the Loop Current rings (LCRs) vertical structure from sea surface height observations is made possible by the use of the gravest empirical modes method (GEM). The GEMs are transfer functions that associate a value of temperature and salinity for each variable pair {dynamic height; pressure}, and are computed by estimating an empirical relationship between dynamic height and the vertical thermohaline structure of the ocean. Between 1993 and 2021, 40 LCRs were detected in the altimetry and their three-dimensional thermohaline structure was reconstructed, as well as a number of dynamically relevant variables (geostrophic and cyclogeostrophic velocity, relative vorticity, potential vorticity, available potential energy and kinetic energy density, etc.). The structure of a typical LCR was computed by fitting an analytical stream function to the LCRs dynamic height signature and reconstructing its vertical structure with the GEM. The total heat and salt contents and energy of each LCR were computed and their cumulative effect on the Gulf of Mexico’s heat, salt and energy balance is discussed. We show that LCRs have a dramatic impact on these balances and estimate that residual surface heat fluxes of −13 W m−2 are necessary to compensate their heat input, while the fresh water outflow of the Mississippi river approximately compensates for their salt excess input. An average energy dissipation of O [10−10–10−9] W kg−1 would be necessary to balance their energy input.
  • Article
    Overflow Water pathways in the North Atlantic
    (Elsevier, 2022-09-09) Lozier, M. Susan ; Bower, Amy S. ; Furey, Heather H. ; Drouin, Kimberley L. ; Xu, Xiaobiao ; Zou, Sijia
    As part of the international Overturning in the Subpolar North Atlantic Program (OSNAP), 135 acoustically-tracked deep floats were deployed to track the spreading pathways of Iceland-Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW) from 2014 to 2018. These water masses, which originate in the Nordic Seas, are transported by the deepest branch of the Atlantic Meridional Overturning Circulation (AMOC). The OSNAP floats provide the first directly-observed, comprehensive Lagrangian view of ISOW and DSOW spreading pathways throughout the subpolar North Atlantic. The collection of OSNAP float trajectories, complemented by model simulations, reveals that their pathways are (a) not restricted to western boundary currents, and (b) remarkably different from each other in character. The spread of DSOW from the Irminger Sea is primarily via the swift deep boundary currents of the Irminger and Labrador Seas, whereas the spread of ISOW out of the Iceland Basin is slower and along multiple export pathways. The characterization of these Overflow Water pathways has important implications for our understanding of the AMOC and its variability. Finally, reconstructions of AMOC variability from proxy data, involving either the strength of boundary currents and/or the property variability of deep waters, should account for the myriad pathways of DSOW and ISOW, but particularly so for the latter.
  • Article
    Redrawing the Iceland−Scotland overflow water pathways in the North Atlantic
    (Nature Research, 2020-04-20) Zou, Sijia ; Bower, Amy S. ; Furey, Heather H. ; Lozier, M. Susan ; Xu, Xiaobiao
    Iceland-Scotland Overflow Water (ISOW) is a primary deep water mass exported from the Norwegian Sea into the North Atlantic as part of the global Meridional Overturning Circulation. ISOW has historically been depicted as flowing counter-clockwise in a deep boundary current around the subpolar North Atlantic, but this single-boundary-following pathway is being challenged by new Lagrangian observations and model simulations. We show here that ISOW leaves the boundary and spreads into the interior towards the central Labrador and Irminger basins after flowing through the Charlie-Gibbs Fracture Zone. We also describe a newly observed southward pathway of ISOW along the western flank of the Mid-Atlantic Ridge. The partitioning of these pathways is shown to be influenced by deep-reaching eddies and meanders of the North Atlantic Current. Our results, in tandem with previous studies, call for a revision in the historical depiction of ISOW pathways throughout the North Atlantic.
  • Article
    Mixing and entrainment in the Red Sea outflow plume. Part I : plume structure
    (American Meteorological Society, 2005-05) Peters, Hartmut ; Johns, William E. ; Bower, Amy S. ; Fratantoni, David M.
    When the salty and heavy water of the Red Sea exits from the Strait of Bab el Mandeb, it continues downslope into the Gulf of Aden mainly along two channels. The 130-km-long “Northern Channel” (NC) is topographically confined and is typically only 5 km wide. In it, the Red Sea plume shows unanticipated patterns of vertical structure, turbulent mixing, and entrainment. Above the seafloor a 25–120-m-thick weakly stratified layer shows little dilution along the channel. Hence this bottom layer undergoes only weak entrainment. In contrast, a 35–285-m-thick interfacial layer shows stronger entrainment and is shown in a companion paper to undergo vigorous turbulent mixing. It is thus the interface that exhibits the bulk of entrainment of the Red Sea plume in the NC. The interfacial layer also carries most of the overall plume transport, increasingly so with downstream distance. The “Southern Channel” (SC) is wider than the NC and is accessed from the latter by a sill about 33 m above the floor of the NC. Entrainment into the bottom layer of the SC is diagnosed to be strong near the entry into the SC such that the near-bottom density and salinity are smaller in the SC than in the NC at the same distance from Bab el Mandeb. In comparison with winter conditions, the authors encountered weaker outflow with shallower equilibration depths during the summer cruise. Bulk Froude numbers computed for the whole plume varied within the range 0.2–1. Local maxima occurred in relatively steep channel sections and coincided with locations of significant entrainment.
  • Article
    The Loop Current: Observations of deep eddies and topographic waves.
    (American Meteorological Society, 2019-05-29) Hamilton, Peter ; Bower, Amy S. ; Furey, Heather H. ; Leben, Robert ; Pérez-Brunius, Paula
    A set of float trajectories, deployed at 1500- and 2500-m depths throughout the deep Gulf of Mexico from 2011 to 2015, are analyzed for mesoscale processes under the Loop Current (LC). In the eastern basin, December 2012–June 2014 had >40 floats per month, which was of sufficient density to allow capturing detailed flow patterns of deep eddies and topographic Rossby waves (TRWs), while two LC eddies formed and separated. A northward advance of the LC front compresses the lower water column and generates an anticyclone. For an extended LC, baroclinic instability eddies (of both signs) develop under the southward-propagating large-scale meanders of the upper-layer jet, resulting in a transfer of eddy kinetic energy (EKE) to the lower layer. The increase in lower-layer EKE occurs only over a few months during meander activity and LC eddy detachment events, a relatively short interval compared with the LC intrusion cycle. Deep EKE of these eddies is dispersed to the west and northwest through radiating TRWs, of which examples were found to the west of the LC. Because of this radiation of EKE, the lower layer of the eastern basin becomes relatively quiescent, particularly in the northeastern basin, when the LC is retracted and a LC eddy has departed. A mean west-to-east, anticyclone–cyclone dipole flow under a mean LC was directly comparable to similar results from a previous moored LC array and also showed connections to an anticlockwise boundary current in the southeastern basin.
  • Article
    Hydrography of the Gulf of Mexico using autonomous floats
    (American Meteorological Society, 2018-04-04) Hamilton, Peter ; Leben, Robert ; Bower, Amy S. ; Furey, Heather H. ; Perez-Brunius, Paula
    Fourteen autonomous profiling floats, equipped with CTDs, were deployed in the deep eastern and western basins of the Gulf of Mexico over a four-year interval (July 2011–August 2015), producing a total of 706 casts. This is the first time since the early 1970s that there has been a comprehensive survey of water masses in the deep basins of the Gulf, with better vertical resolution than available from older ship-based surveys. Seven floats had 14-day cycles with parking depths of 1500 m, and the other half from the U.S. Argo program had varying cycle times. Maps of characteristic water masses, including Subtropical Underwater, Antarctic Intermediate Water (AAIW), and North Atlantic Deep Water, showed gradients from east to west, consistent with their sources being within the Loop Current (LC) and the Yucatan Channel waters. Altimeter SSH was used to characterize profiles being in LC or LC eddy water or in cold eddies. The two-layer nature of the deep Gulf shows isotherms being deeper in the warm anticyclonic LC and LC eddies and shallower in the cold cyclones. Mixed layer depths have an average seasonal signal that shows maximum depths (~60 m) in January and a minimum in June–July (~20 m). Basin-mean steric heights from 0–50-m dynamic heights and altimeter SSH show a seasonal range of ~12 cm, with significant interannual variability. The translation of LC eddies across the western basin produces a region of low homogeneous potential vorticity centered over the deepest part of the western basin.
  • Article
    Atmospheric forcing of the winter air–sea heat fluxes over the northern Red Sea
    (American Meteorological Society, 2013-03-01) Papadopoulos, Vassilis P. ; Abualnaja, Yasser ; Josey, Simon A. ; Bower, Amy S. ; Raitsos, Dionysios E. ; Kontoyiannis, Harilaos ; Hoteit, Ibrahim
    The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.