Karnauskas Kristopher B.

No Thumbnail Available
Last Name
Karnauskas
First Name
Kristopher B.
ORCID
0000-0001-8121-7321

Search Results

Now showing 1 - 1 of 1
  • Article
    The equatorial current system west of the Galapagos Islands during the 2014-16 El Niño as observed by underwater gliders
    (American Meteorological Society, 2020-12-21) Rudnick, Daniel L. ; Owens, W. Brechner ; Johnston, T. M. Shaun ; Karnauskas, Kristopher B. ; Jakoboski, Julie K. ; Todd, Robert E.
    The strong El Niño of 2014–16 was observed west of the Galápagos Islands through sustained deployment of underwater gliders. Three years of observations began in October 2013 and ended in October 2016, with observations at longitudes 93° and 95°W between latitudes 2°N and 2°S. In total, there were over 3000 glider-days of data, covering over 50 000 km with over 12 000 profiles. Coverage was superior closer to the Galápagos on 93°W, where gliders were equipped with sensors to measure velocity as well as temperature, salinity, and pressure. The repeated glider transects are analyzed to produce highly resolved mean sections and maps of observed variables as functions of time, latitude, and depth. The mean sections reveal the structure of the Equatorial Undercurrent (EUC), the South Equatorial Current, and the equatorial front. The mean fields are used to calculate potential vorticity Q and Richardson number Ri. Gradients in the mean are strong enough to make the sign of Q opposite to that of planetary vorticity and to have Ri near unity, suggestive of mixing. Temporal variability is dominated by the 2014–16 El Niño, with the arrival of depressed isopycnals documented in 2014 and 2015. Increases in eastward velocity advect anomalously salty water and are uncorrelated with warm temperatures and deep isopycnals. Thus, vertical advection is important to changes in heat, and horizontal advection is relevant to changes in salt. Implications of this work include possibilities for future research, model assessment and improvement, and sustained observations across the equatorial Pacific.