Nasi Enrico

No Thumbnail Available
Last Name
Nasi
First Name
Enrico
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Calcium-independent, cGMP-mediated light adaptation in invertebrate ciliary photoreceptors
    (Society for Neuroscience, 2005-02-23) Gomez, Maria del Pilar ; Nasi, Enrico
    Calcium is thought to be essential for adaptation of sensory receptor cells. However, the transduction cascade of hyperpolarizing, ciliary photoreceptors of the scallop does not use IP3-mediated Ca release, and the light-sensitive conductance is not measurably permeable to Ca2+. Therefore, two typical mechanisms that couple the light response to [Ca]i changes seem to be lacking in these photoreceptors. Using fluorescent indicators, we determined that, unlike in their microvillar counterparts, photostimulation of ciliary cells under voltage clamp indeed evokes no detectable change in cytosolic Ca. Notwithstanding, these cells exhibit all of the hallmarks of light adaptation, including response range compression, sensitivity shift, and photoresponse acceleration. A possible mediator of Ca-independent sensory adaptation is cGMP, the second messenger that regulates the light-sensitive conductance; cGMP and 8-bromo cGMP not only activate light-dependent K channels but also reduce the amplitude of the light response to an extent greatly in excess of that expected from simple occlusion between light and chemical stimulation. In addition, these substances accelerate the time course of the photocurrent. Tests with pharmacological antagonists suggest that protein kinase G may be a downstream effector that controls, in part, the cGMP-triggered changes in photoresponse properties during light adaptation. However, additional messengers are likely to be implicated, especially in the regulation of response kinetics. These observations suggest a novel feedback inhibition pathway for signaling sensory adaptation.
  • Article
    Prolonged calcium influx after termination of light-induced calcium release in invertebrate photoreceptors
    (Rockefeller University Press, 2009-08-31) Gomez, Maria del Pilar ; Nasi, Enrico
    In microvillar photoreceptors, light stimulates the phospholipase C cascade and triggers an elevation of cytosolic Ca2+ that is essential for the regulation of both visual excitation and sensory adaptation. In some organisms, influx through light-activated ion channels contributes to the Ca2+ increase. In contrast, in other species, such as Lima, Ca2+ is initially only released from an intracellular pool, as the light-sensitive conductance is negligibly permeable to calcium ions. As a consequence, coping with sustained stimulation poses a challenge, requiring an alternative pathway for further calcium mobilization. We observed that after bright or prolonged illumination, the receptor potential of Lima photoreceptors is followed by the gradual development of an after-depolarization that decays in 1–4 minutes. Under voltage clamp, a graded, slow inward current (Islow) can be reproducibly elicited by flashes that saturate the photocurrent, and can reach a peak amplitude in excess of 200 pA. Islow obtains after replacing extracellular Na+ with Li+, guanidinium, or N-methyl-D-glucamine, indicating that it does not reflect the activation of an electrogenic Na/Ca exchange mechanism. An increase in membrane conductance accompanies the slow current. Islow is impervious to anion replacements and can be measured with extracellular Ca2+ as the sole permeant species; Ba can substitute for Ca2+ but Mg2+ cannot. A persistent Ca2+ elevation parallels Islow, when no further internal release takes place. Thus, this slow current could contribute to sustained Ca2+ mobilization and the concomitant regulation of the phototransduction machinery. Although reminiscent of the classical store depletion–operated calcium influx described in other cells, Islow appears to diverge in some significant aspects, such as its large size and insensitivity to SKF96365 and lanthanum; therefore, it may reflect an alternative mechanism for prolonged increase of cytosolic calcium in photoreceptors.
  • Article
    On the gating mechanisms of the light-dependent conductance in Pecten hyperpolarizing photoreceptors : does light remove inactivation in voltage-dependent K channels?
    (Rockefeller University Press, 2005-04-11) Gomez, Maria del Pilar ; Nasi, Enrico
    The hyperpolarizing receptor potential of ciliary photoreceptors of scallop and other mollusks is mediated by a cGMP-activated K conductance; these cells also express a transient potassium current triggered by depolarization. During steady illumination, the outward currents elicited by voltage steps lose their decay kinetics. One interesting conjecture that has been proposed is that the currents triggered by light and by depolarization are mediated by the same population of channels, and that illumination evokes the receptor potential by removing their steady-state inactivation. Exploiting the information that has become available on the phototransduction cascade of ciliary photoreceptors, we demonstrated that the same downstream signaling elements are implicated in the modulation of voltage-elicited currents: direct chemical stimulation both at the level of the G protein and of the final messenger that controls the light-dependent channels (cGMP) also attenuate the falling phase of the voltage-activated current. Application of a protein kinase G antagonist was ineffective, suggesting that a cGMP-initiated phosphorylation step is not implicated. To ascertain the commonality of ionic pathways we used pharmacological blockers. Although millimolar 4-aminopyridine (4-AP) suppressed both currents, at micromolar concentrations only the photocurrent was blocked. Conversely, barium completely and reversibly antagonized the transient voltage-activated current with no detectable effect on the light-evoked current. These results rule out that the same ionic pores mediate both currents; the mechanism of light modulation of the depolarization-evoked K current was elucidated as a time-dependent increase in the light-sensitive conductance that is superimposed on the inactivating K current.
  • Article
    A direct signaling role for phosphatidylinositol 4,5-bisphosphate (PIP2) in the visual excitation process of microvillar receptors
    (American Society for Biochemistry and Molecular Biology, 2005-03-01) Gomez, Maria del Pilar ; Nasi, Enrico
    In microvillar photoreceptors the pivotal role of phospholipase C in light transduction is undisputed, but previous attempts to account for the photoresponse solely in terms of downstream products of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis have proved wanting. In other systems PIP2 has been shown to possess signaling functions of its own, rather than simply serving as a precursor molecule. Because illumination of microvillar photoreceptors cells leads to PIP2 break-down, a potential role for this phospholipid in phototransduction would be to help maintain some element(s) of the transduction cascade in the inactive state. We tested the effect of intracellular dialysis of PIP2 on voltage-clamped molluscan photoreceptors and found a marked reduction in the amplitude of the photocurrent; by contrast, depolarization-activated calcium and potassium currents were unaffected, thus supporting the notion of a specific effect on light signaling. In the dark, PIP2 caused a gradual outward shift of the holding current; this change was due to a decrease in membrane conductance and may reflect the suppression of basal openings of the light-sensitive conductance. The consequences of depleting PIP2 were examined in patches of light-sensitive microvillar membrane screened for the exclusive presence of light-activated ion channels. After excision, superfusion with anti-PIP2 antibodies induced the appearance of single-channel currents. Replenishment of PIP2 by exogenous application reverted the effect. These data support the notion that PIP2, in addition to being the source of inositol trisphosphate and diacylglycerol, two messengers of visual excitation, may also participate in a direct fashion in the control of the light-sensitive conductance