Gast Rebecca J.

No Thumbnail Available
Last Name
Gast
First Name
Rebecca J.
ORCID
0000-0003-3875-3975

Search Results

Now showing 1 - 3 of 3
  • Article
    Marine vertebrate zoonoses : an overview of the DAO Special Issue
    (Inter-Research, 2008-08-19) Moore, Michael J. ; Gast, Rebecca J. ; Bogomolni, Andrea L.
    The role of marine birds, mammals, turtles and fish as vectors of infectious agents of potential risk to humans can be examined from a variety of perspectives. The studies in this DAO Special include a broad survey of multiple agents and species, a sequencing study of Giardia intestinalis haplotypes known to be pathogenic to humans, an assessment of risks to humans working with marine mammals, a source tracking study using E. coli ribotypes, studies of regional Salmonella and Brucella epizootiology, a serology survey and a case report of a herpes simplex infection in a dolphin. Additionally, a recently published study (Venn-Watson et al. 2008; Dis Aquat Org 79:87–93) classifying pure cultures of bacteria from a captive dolphin colony also pertains to this theme. These studies raise the following questions: whether the presence of zoonotic agents in marine vertebrates represents a risk to other marine vertebrates, humans, or both; what are the routes by which these marine vertebrate zoonotic infections are acquired and circulated in the marine ecosystem; to what degree are such agents subclinical versus causes of overt disease in marine vertebrates; what are the subsets of the human population most likely to be affected by such infections; and which human health preventive measures would seem reasonable?
  • Article
    Molecular characterization of Giardia intestinalis haplotypes in marine animals : variation and zoonotic potential
    (Inter-Research, 2008-08-19) Lasek-Nesselquist, Erica ; Bogomolni, Andrea L. ; Gast, Rebecca J. ; Mark Welch, David B. ; Ellis, Julie C. ; Sogin, Mitchell L. ; Moore, Michael J.
    Giardia intestinalis is a microbial eukaryotic parasite that causes diarrheal disease in humans and other vertebrates worldwide. The negative effect on quality of life and economics caused by G. intestinalis may be increased by its potential status as a zoonosis, or a disease that can be transmitted from animals to humans. The zoonotic potential of G. intestinalis has been implied for over 2 decades, with human-infecting genotypes (belonging to the 2 major subgroups, Assemblages A and B) occurring in wildlife and domesticated animals. There are recent reports of G. intestinalis in shellfish, seals, sea lions and whales, suggesting that marine animals are also potential reservoirs of human disease. However, the prevalence, genetic diversity and effect of G. intestinalis in marine environments and the role that marine animals play in transmission of this parasite to humans are relatively unexplored. Here, we provide the first thorough molecular characterization of G. intestinalis in marine vertebrates. Using a multi-locus sequencing approach, we identify human-infecting G. intestinalis haplotypes of both Assemblages A and B in the fecal material of dolphins, porpoises, seals, herring gulls Larus argentatus, common eiders Somateria mollissima and a thresher shark Alopias vulpinus. Our results indicate that G. intestinalis is prevalent in marine ecosystems, and a wide range of marine hosts capable of harboring zoonotic forms of this parasite exist. The presence of G. intestinalis in marine ecosystems raises concerns about how this disease might be transmitted among different host species.
  • Article
    Victims or vectors : a survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic
    (Inter-Research, 2008-08-19) Bogomolni, Andrea L. ; Gast, Rebecca J. ; Ellis, Julie C. ; Dennett, Mark R. ; Pugliares, Katie R. ; Lentell, Betty J. ; Moore, Michael J.
    Surveillance of zoonotic pathogens in marine birds and mammals in the Northwest Atlantic revealed a diversity of zoonotic agents. We found amplicons to sequences from Brucella spp., Leptospira spp., Giardia spp. and Cryptosporidium spp. in both marine mammals and birds. Avian influenza was detected in a harp seal and a herring gull. Routine aerobic and anaerobic culture showed a broad range of bacteria resistant to multiple antibiotics. Of 1460 isolates, 797 were tested for resistance, and 468 were resistant to one or more anti-microbials. 73% (341/468) were resistant to 1–4 drugs and 27% (128/468) resistant to 5–13 drugs. The high prevalence of resistance suggests that many of these isolates could have been acquired from medical and agricultural sources and inter-microbial gene transfer. Combining birds and mammals, 45% (63/141) of stranded and 8% (2/26) of by-caught animals in this study exhibited histopathological and/or gross pathological findings associated with the presence of these pathogens. Our findings indicate that marine mammals and birds in the Northwest Atlantic are reservoirs for potentially zoonotic pathogens, which they may transmit to beachgoers, fishermen and wildlife health personnel. Conversely, zoonotic pathogens found in marine vertebrates may have been acquired via contamination of coastal waters by sewage, run-off and agricultural and medical waste. In either case these animals are not limited by political boundaries and are therefore important indicators of regional and global ocean health.