Gast Rebecca J.

No Thumbnail Available
Last Name
Gast
First Name
Rebecca J.
ORCID
0000-0003-3875-3975

Search Results

Now showing 1 - 4 of 4
  • Article
    Mixotrophy : a widespread and important ecological strategy for planktonic and sea-ice nanoflagellates in the Ross Sea, Antarctica
    (Inter-Research, 2009-03-04) Moorthi, Stefanie D. ; Caron, David A. ; Gast, Rebecca J. ; Sanders, Robert W.
    Mixotrophic nanoflagellates (MNF) were quantified in plankton and sea ice of the Ross Sea, Antarctica, during austral spring. Tracer experiments using fluorescently labeled bacteria (FLB) were conducted to enumerate MNF and determine their contribution to total chloroplastidic and total bacterivorous nanoflagellates. Absolute abundances of MNF were typically <200 ml–1 in plankton assemblages south of the Polar Front, but they comprised 8 to 42% and 3 to 25% of bacterivorous nanoflagellates in the water column and ice cores, respectively. Moreover, they represented up to 10% of all chloroplastidic nanoflagellates in the water column when the prymnesiophyte Phaeocystis antarctica was blooming (up to 23% if P. antarctica, which did not ingest FLB, was excluded from calculations). In ice cores, MNF comprised 5 to 10% of chloroplastidic nanoflagellates. The highest proportions of MNF were found in some surface water samples and in plankton assemblages beneath ice, suggesting a potentially large effect as bacterial grazers in those locations. This study is the first to report abundances and distributions of mixotrophic flagellates in the Southern Ocean. The presence of MNF in every ice and water sample examined suggests that mixotrophy is an important alternative dietary strategy in this region.
  • Article
    Mixotrophic activity and diversity of Antarctic marine protists in austral summer
    (Frontiers Media, 2018-02-02) Gast, Rebecca J. ; Fay, Scott A. ; Sanders, Robert W.
    Identifying putative mixotrophic protist species in the environment is important for understanding their behavior, with the recovery of these species in culture essential for determining the triggers of feeding, grazing rates, and overall impact on bacterial standing stocks. In this project, mixotroph abundances determined using tracer ingestion in water and sea ice samples collected in the Ross Sea, Antarctica during the summer of 2011 were compared with data from the spring (Ross Sea) and fall (Arctic) to examine the impacts of bacterivory/mixotrophy. Mixotrophic nanoplankton (MNAN) were usually less abundant than heterotrophs, but consumed more of the bacterial standing stock per day due to relatively higher ingestion rates (1–7 bacteria mixotroph−1 h−1 vs. 0.1–4 bacteria heterotroph−1 h−1). Yet, even with these high rates observed in the Antarctic summer, mixotrophs appeared to have a smaller contribution to bacterivory than in the Antarctic spring. Additionally, putative mixotroph taxa were identified through incubation experiments accomplished with bromodeoxyuridine-labeled bacteria as food, immunoprecipitation (IP) of labeled DNA, and amplification and high throughput sequencing of the eukaryotic ribosomal V9 region. Putative mixotroph OTUs were identified in the IP samples by taxonomic similarity to known phototroph taxa. OTUs that had increased abundance in IP samples compared to the non-IP samples from both surface and chlorophyll maximum (CM) depths were considered to represent active mixotrophy and include ones taxonomically similar to Dictyocha, Gymnodinium, Pentapharsodinium, and Symbiodinium. These OTUs represent target taxa for isolation and laboratory experiments on triggers for mixotrophy, to be combined with qPCR to estimate their abundance, seasonal distribution and potential impact.
  • Article
    Linking bacterivory and phyletic diversity of protists with a marker gene survey and experimental feeding with BrdU-labeled bacteria
    (Inter-Research, 2013-12-16) Fay, Scott A. ; Gast, Rebecca J. ; Sanders, Robert W.
    Over the last few decades, molecular methods have vastly improved our ability to study the diversity of microbial communities. In molecular diversity surveys, the function of protists is often inferred from phylogeny. Yet these surveys are unable to distinguish between different trophic modes among closely related taxa. Here we present results from a culture-independent study linking bacterivory to the diversity of pelagic protists from 3 depths of a stratified mesotrophic lake. Bacteria were labeled with bromodeoxyuridine (BrdU) and added to lakewater samples; after incubation, total DNA was extracted from filtered samples. Part of the DNA extract was subjected to immunoprecipitation with anti-BrdU antibodies, and then both whole DNA and BrdU-labeled samples were analyzed using 454-pyrosequencing of the v9 region of 18S small subunit rRNA gene amplicons. The results show that a different community of protists exists at each depth, with limited overlap of taxonomic composition between depths. The community of BrdU-labeled protists, deemed putative bacterivores, is largely a subset of the community found in the whole DNA samples. Many of these BrdU-labeled taxa are poorly represented in GenBank and thus are probably rarely isolated and/or uncultured species. Several of the taxa identified as bacterivores are also phototrophs, highlighting the important role of mixotrophy among eukaryotic microbes. Definitive identity of functional traits among taxa requires careful experimentation, yet this method allows a first-pass assay of the trophic role of microbial eukaryotes from environmental samples.
  • Article
    Evaluation of mixotrophy-associated gene expression in two species of polar marine algae
    (Frontiers Media, 2018-08-14) McKie-Krisberg, Zaid M. ; Sanders, Robert W. ; Gast, Rebecca J.
    Mixotrophic flagellates can comprise significant proportions of plankton biomass in marine ecosystems. Despite the growing recognition of the importance of this ecological strategy, and the identification of major environmental factors controlling phagotrophic behavior (light and nutrients), the physiological and molecular mechanisms underlying mixotrophic behavior are still unclear. In this study, we performed RNA-Seq transcriptomic analysis for two mixotrophic prasinophytes, Micromonas polaris and Pyramimonas tychotreta, under dissolved nutrient regimes that altered their ingestion of bacteria prey. Though the strains examined were polar isolates, both belong to genera with widespread distribution. Our aim was to characterize the transcriptomes of these two non-model phytoflagellates, identify transcripts consistent with phagotrophic activity and assess their differential expression in response to nutrient stress. De novo assembly of the transcriptomes yielded large numbers of novel coding transcripts with no known match within public databases. A summary of the transcripts by Gene Ontology terms showed many expected expression patterns, including genes involved in photosynthetic pathways and enzymes implicated in nutrient uptake pathways. Searches of KEGG databases identified several genes associated with intra-cellular digestive pathways actively transcribed in both prasinophytes. Differential expression analysis showed a larger response in P. tychotreta, where 23,373 genes were up-regulated and 1,752 were down-regulated in the low nutrient treatment when phagotrophy was enhanced. In contrast, in M. polaris, low nutrient treatments resulted in up-regulation of 314 transcripts while down-regulating 371. With respect to phagotrophic-related expression, 37 genes were co-expressed in both P. tychotreta and M. polaris, and although the response was less pronounced in M. polaris, it is consistent with differences in observed ingestion behavior. This study presents the first genomic data for Pyramimonas tychotreta, and also contributes to the limited available data for Micromonas polaris. Furthermore, it provides insight into the presence of genes associated with phagocytosis within the Prasinophyceae and contributes to the understanding of potential target genes required for the construction of a complete model of gene regulation of phagocytic behavior in algae.