Donnelly Jeffrey P.

No Thumbnail Available
Last Name
Donnelly
First Name
Jeffrey P.
ORCID
0000-0002-3497-5944

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Atlantic hurricanes and climate over the past 1,500 years
    ( 2009-06) Mann, Michael E. ; Woodruff, Jonathan D. ; Donnelly, Jeffrey P. ; Zhang, Zhihua
    Atlantic Tropical Cyclone (TC) activity, as measured by annual storm counts, reached anomalous levels over the past decade. The short nature of the historical record and potential issues with its reliability in earlier decades, however, has prompted an ongoing debate regarding the reality and significance of the recent rise. Here, we place recent activity in a longer-term context, by comparing two independent estimates of TC activity over the past 1500 years. The first estimate is based on a composite of regional sedimentary evidence of landfalling hurricanes, while the second estimate employs a previously published statistical model of Atlantic TC activity driven by proxy-reconstructions of past climate changes. Both approaches yield consistent evidence of a peak in Atlantic TC activity during Medieval times (around AD 1000) followed by a subsequent lull in activity. The Medieval peak, which rivals or even exceeds (within uncertainties) recent levels of activity, results in the statistical model from a ‘perfect storm’ of La Niña-like climate conditions and relative tropical Atlantic warmth.
  • Preprint
    Abrupt climate change as an important agent of ecological change in the Northeast U.S. throughout the past 15,000 years
    ( 2009-03-30) Shuman, Bryan N. ; Newby, Paige E. ; Donnelly, Jeffrey P.
    We use a series of tests to evaluate two competing hypotheses about the association of climate and vegetation trends in the northeastern United States over the past 15 kyrs. First, that abrupt climate changes on the scale of centuries had little influence on long-term vegetation trends, and second, that abrupt climate changes interacted with slower climate trends to determine the regional sequence of vegetation phases. Our results support the second. Large dissimilarity between temporally-close fossil pollen samples indicates large vegetation changes within 500 years across >4° of latitude at ca. 13.25-12.75, 12.0-11.5, 10.5, 8.25, and 5.25 ka. The evidence of vegetation change coincides with independent isotopic and sedimentary indicators of rapid shifts in temperature and moisture balance. In several cases, abrupt changes reversed long-term vegetation trends, such as when spruce (Picea) and pine (Pinus) pollen percentages rapidly declined to the north and increased to the south at ca. 13.25-12.75 and 8.25 ka respectively. Abrupt events accelerated other long‐term trends, such as a regional increase in beech (Fagus) pollen percentages at 8.5-8.0 ka. The regional hemlock (Tsuga) decline at ca. 5.25 ka is unique among the abrupt events, and may have been induced by high climatic variability (i.e., repeated severe droughts from 5.7-2.0 ka); autoregressive ecological and evolutionary processes could have maintained low hemlock abundance until ca. 2.0 ka. Delayed increases in chestnut (Castanea) pollen abundance after 5.8 and 2.5 ka also illustrate the potential for multi-century climate variability to influence species’ recruitment as well as mortality. Future climate changes will probably also rapidly initiate persistent vegetation change, particularly by acting as broad, regional-scale disturbances.
  • Preprint
    Exploring typhoon variability over the mid-to-late Holocene : evidence of extreme coastal flooding from Kamikoshiki, Japan
    ( 2009-01) Woodruff, Jonathan D. ; Donnelly, Jeffrey P. ; Okusu, Akiko
    Sediment cores from two coastal lakes located on the island of Kamikoshiki in southwestern Japan (Lake Namakoike and Lake Kaiike) provide evidence for the response of a backbarrier beach system to episodic coastal inundation over the last 6400 years. Subbottom seismic surveys exhibit acoustically laminated, parallel to subparallel seismic reflectors, intermittently truncated by erosional unconformities. Sediment cores collected from targeted depocenters in both lakes contain finely laminated organic mud interbedded with coarse grained units, with depths of coarse deposits concurrent with prominent seismic reflectors. The timing of the youngest deposit at Kamikoshiki correlates to the most recently documented breach in the barrier during a typhoon in 1951 AD. Assuming this modern deposit provides an analog for identifying past events, paleo typhoons may be reconstructed from layers exhibiting an increase in grain-size, a break in fine-scale stratigraphy, and elevated Sr concentrations. Periods of barrier breaching are concurrent with an increase in El Niño frequency, indicating that the El Niño/Southern Oscillation has potentially played a key role in governing typhoon variability during the mid-to-late Holocene. An inverse correlation is observed between tropical cyclone reconstructions from the western North Atlantic and the Kamikoshiki site, which may indicate an oscillating pattern in tropical cyclone activity between the western Northern Atlantic and the western North Pacific, or at least between the western Northern Atlantic and regions encompassing southern Japan. The two kamikaze typhoons which contributed to the failed Mongol invasions of Japan in 1274 AD and 1281 AD occur during a period with more frequent marine-sourced deposition at the site, suggesting the events took place during a period of greater regional typhoon activity.