Marshall John C.

No Thumbnail Available
Last Name
Marshall
First Name
John C.
ORCID
0000-0001-9230-3591

Search Results

Now showing 1 - 3 of 3
  • Article
    Direct estimate of lateral eddy diffusivity upstream of Drake Passage
    (American Meteorological Society, 2014-10) Tulloch, Ross ; Ferrari, Raffaele ; Jahn, Oliver ; Klocker, Andreas ; LaCasce, Joseph H. ; Ledwell, James R. ; Marshall, John C. ; Messias, Marie-Jose ; Speer, Kevin G. ; Watson, Andrew J.
    The first direct estimate of the rate at which geostrophic turbulence mixes tracers across the Antarctic Circumpolar Current is presented. The estimate is computed from the spreading of a tracer released upstream of Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The meridional eddy diffusivity, a measure of the rate at which the area of the tracer spreads along an isopycnal across the Antarctic Circumpolar Current, is 710 ± 260 m2 s−1 at 1500-m depth. The estimate is based on an extrapolation of the tracer-based diffusivity using output from numerical tracers released in a one-twentieth of a degree model simulation of the circulation and turbulence in the Drake Passage region. The model is shown to reproduce the observed spreading rate of the DIMES tracer and suggests that the meridional eddy diffusivity is weak in the upper kilometer of the water column with values below 500 m2 s−1 and peaks at the steering level, near 2 km, where the eddy phase speed is equal to the mean flow speed. These vertical variations are not captured by ocean models presently used for climate studies, but they significantly affect the ventilation of different water masses.
  • Article
    Impact of near-inertial waves on vertical mixing and air-sea CO2 fluxes in the Southern Ocean
    (American Geophysical Union, 2019-06-17) Song, Hajoon ; Marshall, John C. ; Campin, Jean-Michel ; McGillicuddy, Dennis J.
    We report the significant impact of near‐inertial waves (NIWs) on vertical mixing and air‐sea carbon dioxide (CO2) fluxes in the Southern Ocean using a biogeochemical model coupled to an eddy‐rich ocean circulation model. The effects of high‐frequency processes are quantified by comparing the fully coupled solution (ONLINE) to two offline simulations based on 5‐day‐averaged output of the ONLINE simulation: one that uses vertical mixing archived from the ONLINE model (CTRL) and another in which vertical mixing is recomputed from the 5‐day average hydrodynamic fields (5dAVG). In this latter simulation, processes with temporal variabilities of a few days including NIWs are excluded in the biogeochemical simulation. Suppression of these processes reduces vertical shear and vertical mixing in the upper ocean, leading to decreased supply of carbon‐rich water from below, less CO2 outgassing in austral winter, and more uptake in summer. The net change amounts up to one third of the seasonal variability in Southern Ocean CO2 flux. Our results clearly demonstrate the importance of resolving high‐frequency processes such as NIWs to better estimate the carbon cycle in numerical model simulations.
  • Article
    Anomalous chlorofluorocarbon uptake by mesoscale eddies in the Drake Passage region
    (John Wiley & Sons, 2015-02-23) Song, Hajoon ; Marshall, John C. ; Gaube, Peter ; McGillicuddy, Dennis J.
    The role of mesoscale eddies in the uptake of anthropogenic chlorofluorocarbon-11 (CFC-11) gas is investigated with a 1/20° eddy-resolving numerical ocean model of a region of the Southern Ocean. With a relatively fast air-sea equilibrium time scale (about a month), the air-sea CFC-11 flux quickly responds to the changes in the mixed layer CFC-11 partial pressure (pCFC-11). At the mesoscale, significant correlations are observed between pCFC-11 anomaly, anomalies in sea surface temperature (SST), net heat flux, and mixed layer depth. An eddy-centric analysis of the simulated CFC-11 field suggests that anticyclonic warm-core eddies generate negative pCFC-11 anomalies and cyclonic cold-core eddies generate positive anomalies of pCFC-11. Surface pCFC-11 is modulated by mixed layer dynamics in addition to CFC-11 air-sea fluxes. A negative cross correlation between mixed layer depth and surface pCFC-11 anomalies is linked to higher CFC-11 uptake in anticyclones and lower CFC-11 uptake in cyclones, especially in winter. An almost exact asymmetry in the air-sea CFC-11 flux between cyclones and anticyclones is found.