Brannon Elizabeth Q.

No Thumbnail Available
Last Name
Brannon
First Name
Elizabeth Q.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Carbon dioxide fluxes reflect plant zonation and belowground biomass in a coastal marsh
    (John Wiley & Sons, 2016-11-15) Moseman-Valtierra, Serena M. ; Abdul-Aziz, Omar I. ; Tang, Jianwu ; Ishtiaq, Khandker S. ; Morkeski, Kate ; Mora, Jordan ; Quinn, Ryan K. ; Martin, Rose M. ; Egan, Katherine E. ; Brannon, Elizabeth Q. ; Carey, Joanna C. ; Kroeger, Kevin D.
    Coastal wetlands are major global carbon sinks; however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, greenhouse gas (GHG) fluxes were compared among major plant-defined zones during growing seasons. Carbon dioxide (CO2) and methane (CH4) fluxes were compared in two mensurative experiments during summer months (2012–2014) that included low marsh (Spartina alterniflora), high marsh (Distichlis spicata and Juncus gerardii-dominated), invasive Phragmites australis zones, and unvegetated ponds. Day- and nighttime fluxes were also contrasted in the native marsh zones. N2O fluxes were measured in parallel with CO2 and CH4 fluxes, but were not found to be significant. To test the relationships of CO2 and CH4 fluxes with several native plant metrics, a multivariate nonlinear model was used. Invasive P. australis zones (−7 to −15 μmol CO2·m−2·s−1) and S. alterniflora low marsh zones (up to −14 μmol CO2·m−2·s−1) displayed highest average CO2 uptake rates, while those in the native high marsh zone (less than −2 μmol CO2·m−2·s−1) were much lower. Unvegetated ponds were typically small sources of CO2 to the atmosphere (<0.5 μmol CO2·m−2·s−1). Nighttime emissions of CO2 averaged only 35% of daytime uptake in the low marsh zone, but they exceeded daytime CO2 uptake by up to threefold in the native high marsh zone. Based on modeling, belowground biomass was the plant metric most strongly correlated with CO2 fluxes in native marsh zones, while none of the plant variables correlated significantly with CH4 fluxes. Methane fluxes did not vary between day and night and did not significantly offset CO2 uptake in any vegetated marsh zones based on sustained global warming potential calculations. These findings suggest that attention to spatial zonation as well as expanded measurements and modeling of GHG emissions across greater temporal scales will help to improve accuracy of carbon accounting in coastal marshes.
  • Article
    Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes
    (John Wiley & Sons, 2016-04-18) Brannon, Elizabeth Q. ; Moseman-Valtierra, Serena M. ; Rella, Chris W. ; Martin, Rose M. ; Chen, Xuechu ; Tang, Jianwu
    Precise and rapid analyses of greenhouse gases (GHGs) will advance understanding of the net climatic forcing of coastal marsh ecosystems. We examined the ability of a cavity ring down spectroscopy (CRDS) analyzer (Model G2508, Picarro) to measure carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes in real-time from coastal marshes through comparisons with a Shimadzu GC-2014 (GC) in a marsh mesocosm experiment and with a similar laser-based N2O analyzer (Model N2O/CO, Los Gatos Research) in both mesocosm and field experiments. Minimum (analytical) detectable fluxes for all gases were more than one order of magnitude lower for the Picarro than the GC. In mesocosms, the Picarro analyzer detected several CO2, CH4, and N2O fluxes that the GC could not, but larger N2O fluxes (218–409 μmol m−2 h−1) were similar between analyzers. Minimum detectable fluxes for the Picarro were 1 order of magnitude higher than the Los Gatos analyzer for N2O. The Picarro and Los Gatos N2O fluxes (3–132 μmol m−2 h−1) differed in two mesocosm nitrogen addition experiments, but were similar in a mesocosm with larger N2O fluxes (326–491 μmol m−2 h−1). In a field comparison, Picarro and Los Gatos N2O fluxes (13 ± 2 μmol m−2 h−1) differed in plots receiving low nitrogen loads but were similar in plots with higher nitrogen loads and fluxes roughly double in magnitude. Both the Picarro and Los Gatos analyzers offer efficient and precise alternatives to GC-based methods, but the former uniquely enables simultaneous measurements of three major GHGs in coastal marshes.