Das Sarah B.

No Thumbnail Available
Last Name
Das
First Name
Sarah B.
ORCID
0000-0003-1410-628X

Search Results

Now showing 1 - 7 of 7
  • Article
    Holocene black carbon in Antarctica paralleled Southern Hemisphere climate
    (John Wiley & Sons, 2017-07-01) Arienzo, Monica ; McConnell, Joseph R. ; Murphy, Lisa N. ; Chellman, Nathan ; Das, Sarah B. ; Kipfstuhl, Sepp ; Mulvaney, Robert
    Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing, but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Intertropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC, and the longest record shows that the highest BC deposition during the Holocene occurred ~8–6 k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5 k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate.
  • Article
    Near-surface environmentally forced changes in the Ross Ice Shelf observed with ambient seismic noise
    (John Wiley & Sons, 2018-10-16) Chaput, Julien ; Aster, Richard C. ; McGrath, Daniel ; Baker, Michael G. ; Anthony, Robert E. ; Gerstoft, Peter ; Bromirski, Peter D. ; Nyblade, Andrew A. ; Stephen, Ralph A. ; Wiens, Douglas A. ; Das, Sarah B. ; Stevens, Laura A.
    Continuous seismic observations across the Ross Ice Shelf reveal ubiquitous ambient resonances at frequencies >5 Hz. These firn‐trapped surface wave signals arise through wind and snow bedform interactions coupled with very low velocity structures. Progressive and long‐term spectral changes are associated with surface snow redistribution by wind and with a January 2016 regional melt event. Modeling demonstrates high spectral sensitivity to near‐surface (top several meters) elastic parameters. We propose that spectral peak changes arise from surface snow redistribution in wind events and to velocity drops reflecting snow lattice weakening near 0°C for the melt event. Percolation‐related refrozen layers and layer thinning may also contribute to long‐term spectral changes after the melt event. Single‐station observations are inverted for elastic structure for multiple stations across the ice shelf. High‐frequency ambient noise seismology presents opportunities for continuous assessment of near‐surface ice shelf or other firn environments.
  • Article
    Ice sheet record of recent sea-ice behavior and polynya variability in the Amundsen Sea, West Antarctica
    (John Wiley & Sons, 2013-01-25) Criscitiello, Alison S. ; Das, Sarah B. ; Evans, Matthew J. ; Frey, Karen E. ; Conway, Howard ; Joughin, Ian ; Medley, Brooke ; Steig, Eric J.
    Our understanding of past sea-ice variability is limited by the short length of satellite and instrumental records. Proxy records can extend these observations but require further development and validation. We compare methanesulfonic acid (MSA) and chloride (Cl–) concentrations from a new firn core from coastal West Antarctica with satellite-derived observations of regional sea-ice concentration (SIC) in the Amundsen Sea (AS) to evaluate spatial and temporal correlations from 2002–2010. The high accumulation rate (~39 g∙cm–2∙yr–1) provides monthly resolved records of MSA and Cl–, allowing detailed investigation of how regional SIC is recorded in the ice-sheet stratigraphy. Over the period 2002–2010 we find that the ice-sheet chemistry is significantly correlated with SIC variability within the AS and Pine Island Bay polynyas. Based on this result, we evaluate the use of ice-core chemistry as a proxy for interannual polynya variability in this region, one of the largest and most persistent polynya areas in Antarctica. MSA concentrations correlate strongly with summer SIC within the polynya regions, consistent with MSA at this site being derived from marine biological productivity during the spring and summer. Cl– concentrations correlate strongly with winter SIC within the polynyas as well as some regions outside the polynyas, consistent with Cl– at this site originating primarily from winter sea-ice formation. Spatial correlations were generally insignificant outside of the polynya areas, with some notable exceptions. Ice-core glaciochemical records from this dynamic region thus may provide a proxy for reconstructing AS and Pine Island Bay polynya variability prior to the satellite era.
  • Article
    Tropical Pacific influence on the source and transport of marine aerosols to West Antarctica
    (American Meteorological Society, 2014-02-01) Criscitiello, Alison S. ; Das, Sarah B. ; Karnauskas, Kristopher B. ; Evans, Matthew J. ; Frey, Karen E. ; Joughin, Ian ; Steig, Eric J. ; McConnell, Joseph R. ; Medley, Brooke
    The climate of West Antarctica is strongly influenced by remote forcing from the tropical Pacific. For example, recent surface warming over West Antarctica reflects atmospheric circulation changes over the Amundsen Sea, driven by an atmospheric Rossby wave response to tropical sea surface temperature (SST) anomalies. Here, it is demonstrated that tropical Pacific SST anomalies also influence the source and transport of marine-derived aerosols to the West Antarctic Ice Sheet. Using records from four firn cores collected along the Amundsen coast of West Antarctica, the relationship between sea ice–modulated chemical species and large-scale atmospheric variability in the tropical Pacific from 1979 to 2010 is investigated. Significant correlations are found between marine biogenic aerosols and sea salts, and SST and sea level pressure in the tropical Pacific. In particular, La Niña–like conditions generate an atmospheric Rossby wave response that influences atmospheric circulation over Pine Island Bay. Seasonal regression of atmospheric fields on methanesulfonic acid (MSA) reveals a reduction in onshore wind velocities in summer at Pine Island Bay, consistent with enhanced katabatic flow, polynya opening, and coastal dimethyl sulfide production. Seasonal regression of atmospheric fields on chloride (Cl−) reveals an intensification in onshore wind velocities in winter, consistent with sea salt transport from offshore source regions. Both the source and transport of marine aerosols to West Antarctica are found to be modulated by similar atmospheric dynamics in response to remote forcing. Finally, the regional ice-core array suggests that there is both a temporally and a spatially varying response to remote tropical forcing.
  • Article
    Antarctic surface melting dynamics : enhanced perspectives from radar scatterometer data
    (American Geophysical Union, 2012-05-17) Trusel, Luke D. ; Frey, Karen E. ; Das, Sarah B.
    Antarctic ice sheet surface melting can regionally influence ice shelf stability, mass balance, and glacier dynamics, in addition to modulating near-surface physical and chemical properties over wide areas. Here, we investigate variability in surface melting from 1999 to 2009 using radar backscatter time series from the SeaWinds scatterometer aboard the QuikSCAT satellite. These daily, continent-wide observations are explored in concert with in situ meteorological records to validate a threshold-based melt detection method. Radar backscatter decreases during melting are significantly correlated with in situ positive degree-days as well as meltwater production determined from energy balance modeling at Neumayer Station, East Antarctica. These results support the use of scatterometer data as a diagnostic indicator of melt intensity (i.e., the relative liquid water production during melting). Greater spatial and temporal melting detected relative to previous passive microwave-based studies is attributed to a higher sensitivity of the scatterometer instrument. Continental melt intensity variability can be explained in part by the dynamics of the Southern Annular Mode and the Southern Oscillation Index, and extreme melting events across the Ross Ice Shelf region may be associated with El Niño conditions. Furthermore, we find that the Antarctic Peninsula accounts for only 20% of Antarctic melt extent but greater than 50% of the total Antarctic melt intensity. Over most areas, annual melt duration and intensity are proportional. However, regional and localized distinctions exist where the melt intensity metric provides greater insight into melting dynamics than previously obtainable with other remote sensing techniques.
  • Article
    Satellite-based estimates of Antarctic surface meltwater fluxes
    (John Wiley & Sons, 2013-12-04) Trusel, Luke D. ; Frey, Karen E. ; Das, Sarah B. ; Munneke, Peter Kuipers ; van den Broeke, Michiel R.
    This study generates novel satellite-derived estimates of Antarctic-wide annual (1999–2009) surface meltwater production using an empirical relationship between radar backscatter from the QuikSCAT (QSCAT) satellite and melt calculated from in situ energy balance observations. The resulting QSCAT-derived melt fluxes significantly agree with output from the regional climate model RACMO2.1 and with independent ground-based observations. The high-resolution (4.45 km) QSCAT-based melt fluxes uniquely detect interannually persistent and intense melt (>400 mm water equivalent (w.e.) year−1) on interior Larsen C Ice Shelf that is not simulated by RACMO2.1. This supports a growing understanding of the importance of a föhn effect in this region and quantifies the resulting locally enhanced melting that is spatially consistent with recently observed Larsen C thinning. These new results highlight important cryosphere-climate interactions and processes that are presently not fully captured by the coarser-resolution (27 km) regional climate model.
  • Article
    Seasonally resolved ice core records from West Antarctica indicate a sea ice source of sea-salt aerosol and a biomass burning source of ammonium
    (John Wiley & Sons, 2014-07-21) Pasteris, Daniel R. ; McConnell, Joseph R. ; Das, Sarah B. ; Criscitiello, Alison S. ; Evans, Matthew J. ; Maselli, Olivia J. ; Sigl, Michael ; Layman, Lawrence
    The sources and transport pathways of aerosol species in Antarctica remain uncertain, partly due to limited seasonally resolved data from the harsh environment. Here, we examine the seasonal cycles of major ions in three high-accumulation West Antarctic ice cores for new information regarding the origin of aerosol species. A new method for continuous acidity measurement in ice cores is exploited to provide a comprehensive, charge-balance approach to assessing the major non-sea-salt (nss) species. The average nss-anion composition is 41% sulfate (SO42−), 36% nitrate (NO3−), 15% excess-chloride (ExCl−), and 8% methanesulfonic acid (MSA). Approximately 2% of the acid-anion content is neutralized by ammonium (NH4+), and the remainder is balanced by the acidity (Acy ≈ H+ − HCO3−). The annual cycle of NO3− shows a primary peak in summer and a secondary peak in late winter/spring that are consistent with previous air and snow studies in Antarctica. The origin of these peaks remains uncertain, however, and is an area of active research. A high correlation between NH4+ and black carbon (BC) suggests that a major source of NH4+ is midlatitude biomass burning rather than marine biomass decay, as previously assumed. The annual peak in excess chloride (ExCl−) coincides with the late-winter maximum in sea ice extent. Wintertime ExCl− is correlated with offshore sea ice concentrations and inversely correlated with temperature from nearby Byrd station. These observations suggest that the winter peak in ExCl− is an expression of fractionated sea-salt aerosol and that sea ice is therefore a major source of sea-salt aerosol in the region.