Richards Clark G.

No Thumbnail Available
Last Name
Richards
First Name
Clark G.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Observations of water mass transformation and eddies in the Lofoten basin of the Nordic Seas
    (American Meteorological Society, 2015-06) Richards, Clark G. ; Straneo, Fiamma
    The Lofoten basin of the Nordic Seas is recognized as a crucial component of the meridional overturning circulation in the North Atlantic because of the large horizontal extent of Atlantic Water and winter surface buoyancy loss. In this study, hydrographic and current measurements collected from a mooring deployed in the Lofoten basin from July 2010 to September 2012 are used to describe water mass transformation and the mesoscale eddy field. Winter mixed layer depths (MLDs) are observed to reach approximately 400 m, with larger MLDs and denser properties resulting from the colder 2010 winter. A heat budget of the upper water column requires lateral input, which balances the net annual heat loss of ~80 W m−2. The lateral flux is a result of mesoscale eddies, which dominate the velocity variability. Eddy velocities are enhanced in the upper 1000 m, with a barotropic component that reaches the bottom. Detailed examination of two eddies, from April and August 2012, highlights the variability of the eddy field and eddy properties. Temperature and salinity properties of the April eddy suggest that it originated from the slope current but was ventilated by surface fluxes. The properties within the eddy were similar to those of the mode water, indicating that convection within the eddies may make an important contribution to water mass transformation. A rough estimate of eddy flux per unit boundary current length suggests that fluxes in the Lofoten basin are larger than in the Labrador Sea because of the enhanced boundary current–interior density difference.
  • Article
    Large spatial variations in the flux balance along the front of a Greenland tidewater glacier
    (European Geosciences Union, 2019-03-15) Wagner, Till ; Straneo, Fiamma ; Richards, Clark G. ; Slater, Donald A. ; Stevens, Laura A. ; Das, Sarah B. ; Singh, Hanumant
    The frontal flux balance of a medium-sized tidewater glacier in western Greenland in the summer is assessed by quantifying the individual components (ice flux, retreat, calving, and submarine melting) through a combination of data and models. Ice flux and retreat are obtained from satellite data. Submarine melting is derived using a high-resolution ocean model informed by near-ice observations, and calving is estimated using a record of calving events along the ice front. All terms exhibit large spatial variability along the ∼5 km wide ice front. It is found that submarine melting accounts for much of the frontal ablation in small regions where two subglacial discharge plumes emerge at the ice front. Away from the subglacial plumes, the estimated melting accounts for a small fraction of frontal ablation. Glacier-wide, these estimates suggest that mass loss is largely controlled by calving. This result, however, is at odds with the limited presence of icebergs at this calving front – suggesting that melt rates in regions outside of the subglacial plumes may be underestimated. Finally, we argue that localized melt incisions into the glacier front can be significant drivers of calving. Our results suggest a complex interplay of melting and calving marked by high spatial variability along the glacier front.
  • Article
    Localized plumes drive front-wide ocean melting of a Greenlandic tidewater glacier
    (American Geophysical Union, 2018-11-15) Slater, Donald A. ; Straneo, Fiamma ; Das, Sarah B. ; Richards, Clark G. ; Wagner, Till
    Recent acceleration of Greenland's ocean‐terminating glaciers has substantially amplified the ice sheet's contribution to global sea level. Increased oceanic melting of these tidewater glaciers is widely cited as the likely trigger, and is thought to be highest within vigorous plumes driven by freshwater drainage from beneath glaciers. Yet melting of the larger part of calving fronts outside of plumes remains largely unstudied. Here we combine ocean observations collected within 100 m of a tidewater glacier with a numerical model to show that unlike previously assumed, plumes drive an energetic fjord‐wide circulation which enhances melting along the entire calving front. Compared to estimates of melting within plumes alone, this fjord‐wide circulation effectively doubles the glacier‐wide melt rate, and through shaping the calving front has a potential dynamic impact on calving. Our results suggest that melting driven by fjord‐scale circulation should be considered in process‐based projections of Greenland's sea level contribution.
  • Article
    Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord
    (John Wiley & Sons, 2016-12-15) Mankoff, Kenneth D. ; Straneo, Fiamma ; Cenedese, Claudia ; Das, Sarah B. ; Richards, Clark G. ; Singh, Hanumant
    Discharge of surface-derived meltwater at the submerged base of Greenland's marine-terminating glaciers creates subglacial discharge plumes that rise along the glacier/ocean interface. These plumes impact submarine melting, calving, and fjord circulation. Observations of plume properties and dynamics are challenging due to their proximity to the calving edge of glaciers. Therefore, to date information on these plumes has been largely derived from models. Here we present temperature, salinity, and velocity data collected in a plume that surfaced at the edge of Saqqarliup Sermia, a midsized Greenlandic glacier. The plume is associated with a narrow core of rising waters approximately 20 m in diameter at the ice edge that spreads to a 200 m by 300 m plume pool as it reaches the surface, before descending to its equilibrium depth. Volume flux estimates indicate that the plume is primarily driven by subglacial discharge and that this has been diluted in a ratio of 1:10 by the time the plume reaches the surface. While highly uncertain, meltwater fluxes are likely 2 orders of magnitude smaller than the subglacial discharge flux. The overall plume characteristics agree with those predicted by theoretical plume models for a convection-driven plume with limited influence from submarine melting.