Chen Changsheng

No Thumbnail Available
Last Name
Chen
First Name
Changsheng
ORCID
0000-0001-8715-6101

Search Results

Now showing 1 - 2 of 2
  • Preprint
    A dike–groyne algorithm in a terrain-following coordinate ocean model (FVCOM) : development, validation and application
    ( 2012-01) Ge, Jianzhong ; Chen, Changsheng ; Qi, Jianhua ; Ding, Pingxing ; Beardsley, Robert C.
    A dike-groyne module is developed and implemented into the unstructured-grid, three dimensional primitive equation Finite-Volume Coastal Ocean Model (FVCOM) for the study of the hydrodynamics around human-made construction in the coastal area. The unstructured-grid finite-volume flux discrete algorithm makes this module capable of realistically including narrow-width dikes and groynes with free exchange in the upper column and solid blocking in the lower column in a terrain-following coordinate system. This algorithm used in the module is validated for idealized cases with emerged and/or submerged dikes and a coastal seawall where either analytical solutions or laboratory experiments are available for comparison. As an example, this module is applied to the Changjiang Estuary where a dike-groyne structure was constructed in the Deep Waterway channel in the inner shelf of the East China Sea (ECS). Driven by the same forcing under given initial and boundary conditions, a comparison was made for model-predicted flow and salinity via observations between dike-groyne and bed-conforming slope algorithms. The results show that with realistic resolution of water transport above and below the dike-groyne structures, the new method provides more accurate results. FVCOM with this MPI-architecture parallelized dike-groyne module provides a new tool for ocean engineering and inundation applications in coastal regions with dike, seawall and/or dam structures.
  • Article
    Saltwater intrusion into the Changjiang River : a model-guided mechanism study
    (American Geophysical Union, 2009-02-12) Xue, Pengfei ; Chen, Changsheng ; Ding, Pingxing ; Beardsley, Robert C. ; Lin, Huichan ; Ge, Jianzhong ; Kong, Yazhen
    The Changjiang River (CR) is divided into a southern branch (SB) and a northern branche (NB) by Chongming Island as the river enters the East China Sea. Observations reveal that during the dry season the saltwater in the inner shelf of the East China Sea flows into the CR through the NB and forms an isolated mass of saltwater in the upstream area of the SB. The physical mechanism causing this saltwater intrusion has been studied using the high-resolution unstructured-grid Finite-Volume Coastal Ocean Model (FVCOM). The results suggest that the intrusion is caused by a complex nonlinear interaction process in relation to the freshwater flux upstream, tidal currents, mixing, wind, and the salt distribution in the inner shelf of the East China Sea. The tidal rectification, resulting from the interaction of the convergence or divergence of tidal momentum flux and bottom friction over abrupt topography, produces a net upstreamward volume flux from NB to SB. With river discharge the net water transport in the NB is driven through a momentum balance of surface elevation gradient forcing, horizontal advection, and vertical diffusion. In the dry season, reducing the surface elevation gradient forcing makes tidal rectification a key process favorable for the saltwater intrusion. A northerly wind tends to enhance the saltwater intrusion by reducing the seaward surface elevation gradient forcing rather than either the baroclinic pressure gradient forcing or the wind-driven Ekman transport. A convergence experiment suggests that high grid resolution (∼100 m or less) is required to correctly resolve the net water transport through the NB, particularly in the narrow channel on the northern coast of Chongming Island.