Halpin Patrick N.

No Thumbnail Available
Last Name
Halpin
First Name
Patrick N.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Striking the right balance in right whale conservation
    (NRC Research Press, 2009-08-14) Schick, Robert S. ; Halpin, Patrick N. ; Read, Andrew J. ; Slay, Christopher K. ; Kraus, Scott D. ; Mate, Bruce R. ; Baumgartner, Mark F. ; Roberts, Jason J. ; Best, Benjamin D. ; Good, Caroline P. ; Loarie, Scott R. ; Clark, James S.
    Despite many years of study and protection, the North Atlantic right whale (Eubalaena glacialis) remains on the brink of extinction. There is a crucial gap in our understanding of their habitat use in the migratory corridor along the eastern seaboard of the United States. Here, we characterize habitat suitability in migrating right whales in relation to depth, distance to shore, and the recently enacted ship speed regulations near major ports. We find that the range of suitable habitat exceeds previous estimates and that, as compared with the enacted 20 nautical mile buffer, the originally proposed 30 nautical mile buffer would protect more habitat for this critically endangered species.
  • Article
    Techniques for cetacean–habitat modeling
    (Inter-Research, 2006-04-03) Redfern, J. V. ; Ferguson, M. C. ; Becker, E. A. ; Hyrenbach, K. D. ; Good, Caroline P. ; Barlow, Jay ; Kaschner, K. ; Baumgartner, Mark F. ; Forney, K. A. ; Ballance, L. T. ; Fauchald, P. ; Halpin, Patrick N. ; Hamazaki, T. ; Pershing, Andrew J. ; Qian, Song S. ; Read, Andrew J. ; Reilly, S. B. ; Torres, Leigh ; Werner, Francisco E.
    Cetacean–habitat modeling, although still in the early stages of development, represents a potentially powerful tool for predicting cetacean distributions and understanding the ecological processes determining these distributions. Marine ecosystems vary temporally on diel to decadal scales and spatially on scales from several meters to 1000s of kilometers. Many cetacean species are wide-ranging and respond to this variability by changes in distribution patterns. Cetacean–habitat models have already been used to incorporate this variability into management applications, including improvement of abundance estimates, development of marine protected areas, and understanding cetacean–fisheries interactions. We present a review of the development of cetacean–habitat models, organized according to the primary steps involved in the modeling process. Topics covered include purposes for which cetacean–habitat models are developed, scale issues in marine ecosystems, cetacean and habitat data collection, descriptive and statistical modeling techniques, model selection, and model evaluation. To date, descriptive statistical techniques have been used to explore cetacean–habitat relationships for selected species in specific areas; the numbers of species and geographic areas examined using computationally intensive statistic modeling techniques are considerably less, and the development of models to test specific hypotheses about the ecological processes determining cetacean distributions has just begun. Future directions in cetacean–habitat modeling span a wide range of possibilities, from development of basic modeling techniques to addressing important ecological questions.
  • Preprint
    Evidence of resource partitioning between humpback and minke whales around the western Antarctic Peninsula
    ( 2008-09-20) Friedlaender, Ari S. ; Lawson, Gareth L. ; Halpin, Patrick N.
    For closely related sympatric species to coexist, they must differ to some degree in their ecological requirements or niches (e.g., diets) to avoid inter-specific competition. Baleen whales in the Antarctic feed primarily on krill, and the large sympatric pre-whaling community suggests resource partitioning among these species or a non-limiting prey resource. In order to examine ecological differences between sympatric humpback and minke whales around the Western Antarctic Peninsula, we made measurements of the physical environment, observations of whale distribution, and concurrent acoustic measurements of krill aggregations. Mantel’s tests and Classification and regression tree models indicate both similarities and differences in the spatial associations between humpback and minke whales, environmental features, and prey. The data suggest (1) similarities (proximity to shore) and differences (prey abundance versus deep water temperatures) in horizontal spatial distribution patterns, (2) unambiguous vertical resource partitioning with minke whales associating with deeper krill aggregations across a range of spatial scales, and (3) that interference competition between these two species is unlikely. These results add to the paucity of ecological knowledge relating baleen whales and their prey in the Antarctic and should be considered in conservation and management efforts for Southern Ocean cetaceans and ecosystems.
  • Article
    Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula
    (Inter-Research, 2006-07-18) Friedlaender, Ari S. ; Halpin, Patrick N. ; Qian, Song S. ; Lawson, Gareth L. ; Wiebe, Peter H. ; Thiele, Deb ; Read, Andrew J.
    The Western Antarctic Peninsula (WAP) is a biologically rich area supporting large standing stocks of krill and top predators (including whales, seals and seabirds). Physical forcing greatly affects productivity, recruitment, survival and distribution of krill in this area. In turn, such interactions are likely to affect the distribution of baleen whales. The Southern Ocean GLOBEC research program aims to explore the relationships and interactions between the environment, krill and predators around Marguerite Bay (WAP) in autumn 2001 and 2002. Bathymetric and environmental variables including acoustic backscattering as an indicator of prey abundance were used to model whale distribution patterns. We used an iterative approach employing (1) classification and regression tree (CART) models to identify oceanographic and ecological variables contributing to variability in humpback Megaptera novaeangliae and minke Balaenoptera acutorstrata whale distribution, and (2) generalized additive models (GAMs) to elucidate functional ecological relationships between these variables and whale distribution. The CART models indicated that the cetacean distribution was tightly coupled with zooplankton acoustic volume backscatter in the upper (25 to 100 m), and middle (100 to 300 m) portions of the water column. Whale distribution was also related to distance from the ice edge and bathymetric slope. The GAMs indicated a persistent, strong, positive relationship between increasing zooplankton volume and whale relative abundance. Furthermore, there was a lower limit for averaged acoustic volume backscatter of zooplankton below which the relationship between whales and prey was not significant. The GAMs also supported an annual relationship between whale distribution, distance from the ice edge and bathymetric slope, suggesting that these are important features for aggregating prey. Our results demonstrate that during the 2 yr study, whales were consistently and predictably associated with the distribution of zooplankton. Thus, humpback and minke whales may be able to locate physical features and oceanographic processes that enhance prey aggregation.
  • Article
    Diel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution
    (Inter-Research, 2009-12-03) Friedlaender, Ari S. ; Hazen, Elliott L. ; Nowacek, Douglas P. ; Halpin, Patrick N. ; Ware, Colin ; Weinrich, Mason T. ; Hurst, Thomas P. ; Wiley, David N.
    Humpback whales Megaptera novaeangliae have adopted unique feeding strategies to take advantage of behavioral changes in their prey. However, logistical constraints have largely limited ecological analyses of these interactions. Our objectives were to (1) link humpback whale feeding behaviors to concurrent measurements of prey using scientific echo-sounders, and (2) quantify how sand lance behavior influences the feeding behaviors and foraging ecology of humpback whales. To measure, in fine detail, the 3-dimensional orientation and movement patterns of humpback whales underwater, we used a multi-sensor tag attached via suction cups (DTAG). We tested the specific hypothesis that the diel movement patterns of sand lance between bottom substrate and the water column correlates to changes between surface and bottom feeding strategies of humpback whales on Stellwagen Bank, MA. We collected over 96 h of both day- and nighttime data from 15 whales in 2006, and recorded 393 surface and 230 bottom feeding events. Individual whales exhibit both surface and bottom feeding behaviors, switching from one to the other in relation to changing light and prey conditions. Surface feeding behaviors were individually variable in their constitution but ubiquitously biased towards daylight hours, when prey was most abundant in the upper portion of the water column. Bottom feeding behavior occurred largely at night, coincident with when sand lance descend to seek refuge in the substrate. Our data provide novel insights into the behavioral ecology of humpback whales and their prey, indicating significant diel patterns in foraging behaviors concurrent with changes in prey behavior.