Trathan Phil N.

No Thumbnail Available
Last Name
Trathan
First Name
Phil N.
ORCID
0000-0001-6673-9930

Search Results

Now showing 1 - 3 of 3
  • Article
    The emperor penguin - vulnerable to projected rates of warming and sea ice loss
    (Elsevier, 2019-10-08) Trathan, Phil N. ; Wienecke, Barbara ; Barbraud, Christophe ; Jenouvrier, Stephanie ; Kooyman, Gerald L. ; Le Bohec, Céline ; Ainley, David G. ; Ancel, André ; Zitterbart, Daniel ; Chown, Steven L. ; LaRue, Michelle ; Cristofari, Robin ; Younger, Jane ; Clucas, Gemma V. ; Bost, Charles-Andre ; Brown, Jennifer A. ; Gillett, Harriet J. ; Fretwell, Peter T.
    We argue the need to improve climate change forecasting for ecology, and importantly, how to relate long-term projections to conservation. As an example, we discuss the need for effective management of one species, the emperor penguin, Aptenodytes forsteri. This species is unique amongst birds in that its breeding habit is critically dependent upon seasonal fast ice. Here, we review its vulnerability to ongoing and projected climate change, given that sea ice is susceptible to changes in winds and temperatures. We consider published projections of future emperor penguin population status in response to changing environments. Furthermore, we evaluate the current IUCN Red List status for the species, and recommend that its status be changed to Vulnerable, based on different modelling projections of population decrease of ≥50% over the current century, and the specific traits of the species. We conclude that current conservation measures are inadequate to protect the species under future projected scenarios. Only a reduction in anthropogenic greenhouse gas emissions will reduce threats to the emperor penguin from altered wind regimes, rising temperatures and melting sea ice; until such time, other conservation actions are necessary, including increased spatial protection at breeding sites and foraging locations. The designation of large-scale marine spatial protection across its range would benefit the species, particularly in areas that have a high probability of becoming future climate change refugia. We also recommend that the emperor penguin is listed by the Antarctic Treaty as an Antarctic Specially Protected Species, with development of a species Action Plan.
  • Article
    Marine ecosystem assessment for the Southern Ocean: birds and marine mammals in a changing climate
    (Frontiers Media, 2020-11-04) Bestley, Sophie ; Ropert-Coudert, Yan ; Bengtson Nash, Susan ; Brooks, Cassandra M. ; Cotté, Cédric ; Dewar, Meagan ; Friedlaender, Ari S. ; Jackson, Jennifer A. ; Labrousse, Sara ; Lowther, Andrew D. ; McMahon, Clive R. ; Phillips, Richard A. ; Pistorius, Pierre ; Puskic, Peter S. ; de Almeida Reis, Ana Olívia ; Reisinger, Ryan ; Santos, Mercedes ; Tarszisz, Esther ; Tixier, Paul ; Trathan, Phil N. ; Wege, Mia ; Wienecke, Barbara
    The massive number of seabirds (penguins and procellariiformes) and marine mammals (cetaceans and pinnipeds) – referred to here as top predators – is one of the most iconic components of the Antarctic and Southern Ocean. They play an important role as highly mobile consumers, structuring and connecting pelagic marine food webs and are widely studied relative to other taxa. Many birds and mammals establish dense breeding colonies or use haul-out sites, making them relatively easy to study. Cetaceans, however, spend their lives at sea and thus aspects of their life cycle are more complicated to monitor and study. Nevertheless, they all feed at sea and their reproductive success depends on the food availability in the marine environment, hence they are considered useful indicators of the state of the marine resources. In general, top predators have large body sizes that allow for instrumentation with miniature data-recording or transmitting devices to monitor their activities at sea. Development of scientific techniques to study reproduction and foraging of top predators has led to substantial scientific literature on their population trends, key biological parameters, migratory patterns, foraging and feeding ecology, and linkages with atmospheric or oceanographic dynamics, for a number of species and regions. We briefly summarize the vast literature on Southern Ocean top predators, focusing on the most recent syntheses. We also provide an overview on the key current and emerging pressures faced by these animals as a result of both natural and human causes. We recognize the overarching impact that environmental changes driven by climate change have on the ecology of these species. We also evaluate direct and indirect interactions between marine predators and other factors such as disease, pollution, land disturbance and the increasing pressure from global fisheries in the Southern Ocean. Where possible we consider the data availability for assessing the status and trends for each of these components, their capacity for resilience or recovery, effectiveness of management responses, risk likelihood of key impacts and future outlook.
  • Article
    Have whales returned to a historical hotspot of industrial whaling? the pattern of southern right whale Eubalaena australis recovery at South Georgia
    (Inter Research, 2020-11-05) Jackson, Jennifer A. ; Kennedy, Amy S. ; Moore, Michael J. ; Andriolo, Artur ; Bamford, Connor C. G. ; Calderan, Susannah ; Cheeseman, Ted ; Gittins, George ; Groch, Karina ; Kelly, Natalie ; Leaper, Russell ; Leslie, Matthew S. ; Lurcock, Sarah ; Miller, Brian S. ; Richardson, Jessica ; Rowntree, Victoria ; Smith, Patrick ; Stepien, Emilie N. ; Stowasser, Gabriele ; Trathan, Phil N. ; Vermeulen, Els ; Zerbini, Alexandre N. ; Carroll, Emma
    Around 176500 whales were killed in the sub-Antarctic waters off South Georgia (South Atlantic) between 1904 and 1965. In recent decades, whales have once again become summer visitors, with the southern right whale (SRW) the most commonly reported species until 2011. Here, we assess the distribution, temporal pattern, health status and likely prey of SRWs in these waters, combining observations from a summertime vessel-based expedition to South Georgia, stable isotope data collected from SRWs and putative prey and sightings reports collated by the South Georgia Museum. The expedition used directional acoustics and visual surveys to localise whales and collected skin biopsies and photo-IDs. During 76 h of visual observation effort over 19 expedition days, SRWs were encountered 15 times (~31 individuals). Photo-IDs, combined with publicly contributed images from commercial vessels, were reconciled and quality-controlled to form a catalogue of 6 fully (i.e. both sides) identified SRWs and 26 SRWs identified by either left or right sides. No photo-ID matches were found with lower-latitude calving grounds, but 3 whales had gull lesions supporting a direct link with Península Valdés, Argentina. The isotopic position of SRWs in the South Georgia food web suggests feeding on a combination of copepod and krill species. Opportunistic reports of SRW sightings and associated group sizes remain steady over time, while humpback whales provide a strong contrast, with increased sighting rates and group sizes seen since 2013. These data suggest a plateau in SRWs and an increasing humpback whale presence in South Georgia waters following the cessation of whaling.