Trathan Phil N.

No Thumbnail Available
Last Name
Trathan
First Name
Phil N.
ORCID
0000-0001-6673-9930

Search Results

Now showing 1 - 3 of 3
  • Article
    The call of the emperor penguin: legal responses to species threatened by climate change
    (Wiley, 2021-08-03) Jenouvrier, Stephanie ; Che-Castaldo, Judy ; Wolf, Shaye ; Holland, Marika M. ; Labrousse, Sara ; LaRue, Michelle ; Wienecke, Barbara ; Fretwell, Peter T. ; Barbraud, Christophe ; Greenwald, Noah ; Stroeve, Julienne ; Trathan, Phil N.
    Species extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate-dependent meta-population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi-extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
  • Article
    Quantifying the causes and consequences of variation in satellite-derived population indices: a case study of emperor penguins
    (Wiley Open Access, 2021-08-11) Labrousse, Sara ; Iles, David T. ; Viollat, Lise ; Fretwell, Peter T. ; Trathan, Phil N. ; Zitterbart, Daniel ; Jenouvrier, Stephanie ; LaRue, Michelle
    Very high-resolution satellite (VHR) imagery is a promising tool for estimating the abundance of wildlife populations, especially in remote regions where traditional surveys are limited by logistical challenges. Emperor penguins Aptenodytes forsteri were the first species to have a circumpolar population estimate derived via VHR imagery. Here we address an untested assumption from Fretwell et al. (2012) that a single image of an emperor penguin colony is a reasonable representation of the colony for the year the image was taken. We evaluated satellite-related and environmental variables that might influence the calculated area of penguin pixels to reduce uncertainties in satellite-based estimates of emperor penguin populations in the future. We focused our analysis on multiple VHR images from three representative colonies: Atka Bay, Stancomb-Wills (Weddell Sea sector) and Coulman Island (Ross Sea sector) between September and December during 2011. We replicated methods in Fretwell et al. (2012), which included using supervised classification tools in ArcGIS 10.7 software to calculate area occupied by penguins (hereafter referred to as ‘population indices’) in each image. We found that population indices varied from 2 to nearly 6-fold, suggesting that penguin pixel areas calculated from a single image may not provide a complete understanding of colony size for that year. Thus, we further highlight the important roles of: (i) sun azimuth and elevation through image resolution and (ii) penguin patchiness (aggregated vs. distributed) on the calculated areas. We found an effect of wind and temperature on penguin patchiness. Despite intra-seasonal variability in population indices, simulations indicate that reliable, robust population trends are possible by including satellite-related and environmental covariates and aggregating indices across time and space. Our work provides additional parameters that should be included in future models of population size for emperor penguins.
  • Article
    Marine ecosystem assessment for the Southern Ocean: birds and marine mammals in a changing climate
    (Frontiers Media, 2020-11-04) Bestley, Sophie ; Ropert-Coudert, Yan ; Bengtson Nash, Susan ; Brooks, Cassandra M. ; Cotté, Cédric ; Dewar, Meagan ; Friedlaender, Ari S. ; Jackson, Jennifer A. ; Labrousse, Sara ; Lowther, Andrew D. ; McMahon, Clive R. ; Phillips, Richard A. ; Pistorius, Pierre ; Puskic, Peter S. ; de Almeida Reis, Ana Olívia ; Reisinger, Ryan ; Santos, Mercedes ; Tarszisz, Esther ; Tixier, Paul ; Trathan, Phil N. ; Wege, Mia ; Wienecke, Barbara
    The massive number of seabirds (penguins and procellariiformes) and marine mammals (cetaceans and pinnipeds) – referred to here as top predators – is one of the most iconic components of the Antarctic and Southern Ocean. They play an important role as highly mobile consumers, structuring and connecting pelagic marine food webs and are widely studied relative to other taxa. Many birds and mammals establish dense breeding colonies or use haul-out sites, making them relatively easy to study. Cetaceans, however, spend their lives at sea and thus aspects of their life cycle are more complicated to monitor and study. Nevertheless, they all feed at sea and their reproductive success depends on the food availability in the marine environment, hence they are considered useful indicators of the state of the marine resources. In general, top predators have large body sizes that allow for instrumentation with miniature data-recording or transmitting devices to monitor their activities at sea. Development of scientific techniques to study reproduction and foraging of top predators has led to substantial scientific literature on their population trends, key biological parameters, migratory patterns, foraging and feeding ecology, and linkages with atmospheric or oceanographic dynamics, for a number of species and regions. We briefly summarize the vast literature on Southern Ocean top predators, focusing on the most recent syntheses. We also provide an overview on the key current and emerging pressures faced by these animals as a result of both natural and human causes. We recognize the overarching impact that environmental changes driven by climate change have on the ecology of these species. We also evaluate direct and indirect interactions between marine predators and other factors such as disease, pollution, land disturbance and the increasing pressure from global fisheries in the Southern Ocean. Where possible we consider the data availability for assessing the status and trends for each of these components, their capacity for resilience or recovery, effectiveness of management responses, risk likelihood of key impacts and future outlook.