Rosenthal Joshua J. C.

No Thumbnail Available
Last Name
Rosenthal
First Name
Joshua J. C.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    Spatially regulated editing of genetic information within a neuron
    (Oxford University Press, 2020-03-23) Vallecillo-Viejo, Isabel C. ; Liscovitch-Brauer, Noa ; Diaz Quiroz, Juan F. ; Montiel-González, Maria Fernanda ; Nemes, Sonya E. ; Rangan, Kavita J. ; Levinson, Simon R. ; Eisenberg, Eli ; Rosenthal, Joshua J. C.
    In eukaryotic cells, with the exception of the specialized genomes of mitochondria and plastids, all genetic information is sequestered within the nucleus. This arrangement imposes constraints on how the information can be tailored for different cellular regions, particularly in cells with complex morphologies like neurons. Although messenger RNAs (mRNAs), and the proteins that they encode, can be differentially sorted between cellular regions, the information itself does not change. RNA editing by adenosine deamination can alter the genome’s blueprint by recoding mRNAs; however, this process too is thought to be restricted to the nucleus. In this work, we show that ADAR2 (adenosine deaminase that acts on RNA), an RNA editing enzyme, is expressed outside of the nucleus in squid neurons. Furthermore, purified axoplasm exhibits adenosine-to-inosine activity and can specifically edit adenosines in a known substrate. Finally, a transcriptome-wide analysis of RNA editing reveals that tens of thousands of editing sites (>70% of all sites) are edited more extensively in the squid giant axon than in its cell bodies. These results indicate that within a neuron RNA editing can recode genetic information in a region-specific manner.
  • Article
    A-to-I RNA editing in the earliest-diverging Eumetazoan phyla
    (Oxford University Press, 2017-04-08) Porath, Hagit T. ; Schaffer, Amos A. ; Kaniewska, Paulina ; Alon, Shahar ; Eisenberg, Eli ; Rosenthal, Joshua J. C. ; Levanon, Erez ; Levy, Oren
    The highly conserved ADAR enzymes, found in all multicellular metazoans, catalyze the editing of mRNA transcripts by the deamination of adenosines to inosines. This type of editing has two general outcomes: site specific editing, which frequently leads to recoding, and clustered editing, which is usually found in transcribed genomic repeats. Here, for the first time, we looked for both editing of isolated sites and clustered, non-specific sites in a basal metazoan, the coral Acropora millepora during spawning event, in order to reveal its editing pattern. We found that the coral editome resembles the mammalian one: it contains more than 500,000 sites, virtually all of which are clustered in non-coding regions that are enriched for predicted dsRNA structures. RNA editing levels were increased during spawning and increased further still in newly released gametes. This may suggest that editing plays a role in introducing variability in coral gametes.
  • Preprint
    Trade-off between transcriptome plasticity and genome evolution in cephalopods
    ( 2017-03) Liscovitch-Brauer, Noa ; Alon, Shahar ; Porath, Hagit T. ; Elstein, Boaz ; Unger, Ron ; Ziv, Tamar ; Admon, Arie ; Levanon, Erez ; Rosenthal, Joshua J. C. ; Eisenberg, Eli
    RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of their nature and effects in these organisms. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function.
  • Article
    Adaptive proteome diversification by nonsynonymous A-to-I RNA editing in coleoid cephalopods
    (Oxford University Press, 2021-05-22) Shoshan, Yoav ; Liscovitch-Brauer, Noa ; Rosenthal, Joshua J. C. ; Eisenberg, Eli
    RNA editing by the ADAR enzymes converts selected adenosines into inosines, biological mimics for guanosines. By doing so, it alters protein-coding sequences, resulting in novel protein products that diversify the proteome beyond its genomic blueprint. Recoding is exceptionally abundant in the neural tissues of coleoid cephalopods (octopuses, squids, and cuttlefishes), with an over-representation of nonsynonymous edits suggesting positive selection. However, the extent to which proteome diversification by recoding provides an adaptive advantage is not known. It was recently suggested that the role of evolutionarily conserved edits is to compensate for harmful genomic substitutions, and that there is no added value in having an editable codon as compared with a restoration of the preferred genomic allele. Here, we show that this hypothesis fails to explain the evolutionary dynamics of recoding sites in coleoids. Instead, our results indicate that a large fraction of the shared, strongly recoded, sites in coleoids have been selected for proteome diversification, meaning that the fitness of an editable A is higher than an uneditable A or a genomically encoded G.
  • Article
    Extensive recoding of the neural proteome in cephalopods by RNA editing
    (Annual Reviews, 2023-02) Rosenthal, Joshua J.C. ; Eisenberg, Eli
    The coleoid cephalopods have the largest brains, and display the most complex behaviors, of all invertebrates. The molecular and cellular mechanisms that underlie these remarkable advancements remain largely unexplored. Early molecular cloning studies of squid ion channel transcripts uncovered an unusually large number of A?I RNA editing sites that recoded codons. Further cloning of other neural transcripts showed a similar pattern. The advent of deep-sequencing technologies and the associated bioinformatics allowed the mapping of RNA editing events across the entire neural transcriptomes of various cephalopods. The results were remarkable: They contained orders of magnitude more recoding editing sites than any other taxon. Although RNA editing sites are abundant in most multicellular metazoans, they rarely recode. In cephalopods, the majority of neural transcripts are recoded. Recent studies have focused on whether these events are adaptive, as well as other noncanonical aspects of cephalopod RNA editing.