Jayne Steven R.

No Thumbnail Available
Last Name
Jayne
First Name
Steven R.
ORCID
0000-0001-7999-0147

Search Results

Now showing 1 - 7 of 7
  • Article
    Autonomous and Lagrangian ocean observations for Atlantic tropical cyclone studies and forecasts
    (Oceanography Society, 2017-06) Goni, Gustavo J. ; Todd, Robert E. ; Jayne, Steven R. ; Halliwell, George R. ; Glenn, Scott ; Dong, Jili ; Curry, Ruth G. ; Domingues, Ricardo ; Bringas, Francis ; Centurioni, Luca R. ; DiMarco, Steven F. ; Miles, Travis ; Morell, Julio M. ; Pomales, Luis ; Kim, Hyun-Sook ; Robbins, Pelle E. ; Gawarkiewicz, Glen G. ; Wilkin, John L. ; Heiderich, Joleen ; Baltes, Rebecca ; Cione, Joseph J. ; Seroka, Greg ; Knee, Kelly ; Sanabia, Elizabeth
    The tropical Atlantic basin is one of seven global regions where tropical cyclones (TCs) commonly originate, intensify, and affect highly populated coastal areas. Under appropriate atmospheric conditions, TC intensification can be linked to upper-ocean properties. Errors in Atlantic TC intensification forecasts have not been significantly reduced during the last 25 years. The combined use of in situ and satellite observations, particularly of temperature and salinity ahead of TCs, has the potential to improve the representation of the ocean, more accurately initialize hurricane intensity forecast models, and identify areas where TCs may intensify. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface temperature, salinity, and density fields in support of TC intensity studies and forecasts has yet to be designed and implemented. Autonomous and Lagrangian platforms and sensors offer cost-effective opportunities to accomplish this objective. Here, we highlight recent efforts to use autonomous platforms and sensors, including surface drifters, profiling floats, underwater gliders, and dropsondes, to better understand air-sea processes during high-wind events, particularly those geared toward improving hurricane intensity forecasts. Real-time data availability is key for assimilation into numerical weather forecast models.
  • Article
    Ocean observations in support of studies and forecasts of tropical and extratropical cyclones
    (Frontiers Media, 2019-07-29) Domingues, Ricardo ; Kuwano-Yoshida, Akira ; Chardon-Maldonado, Patricia ; Todd, Robert E. ; Halliwell, George R. ; Kim, Hyun-Sook ; Lin, I.-I. ; Sato, Katsufumi ; Narazaki, Tomoko ; Shay, Lynn Keith ; Miles, Travis ; Glenn, Scott ; Zhang, Jun A. ; Jayne, Steven R. ; Centurioni, Luca R. ; Le Hénaff, Matthieu ; Foltz, Gregory R. ; Bringas, Francis ; Ali, M. M. ; DiMarco, Steven F. ; Hosoda, Shigeki ; Fukuoka, Takuya ; LaCour, Benjamin ; Mehra, Avichal ; Sanabia, Elizabeth ; Gyakum, John R. ; Dong, Jili ; Knaff, John A. ; Goni, Gustavo J.
    Over the past decade, measurements from the climate-oriented ocean observing system have been key to advancing the understanding of extreme weather events that originate and intensify over the ocean, such as tropical cyclones (TCs) and extratropical bomb cyclones (ECs). In order to foster further advancements to predict and better understand these extreme weather events, a need for a dedicated observing system component specifically to support studies and forecasts of TCs and ECs has been identified, but such a system has not yet been implemented. New technologies, pilot networks, targeted deployments of instruments, and state-of-the art coupled numerical models have enabled advances in research and forecast capabilities and illustrate a potential framework for future development. Here, applications and key results made possible by the different ocean observing efforts in support of studies and forecasts of TCs and ECs, as well as recent advances in observing technologies and strategies are reviewed. Then a vision and specific recommendations for the next decade are discussed.
  • Article
    The Kuroshio and Luzon Undercurrent east of Luzon Island
    (The Oceanography Society, 2015-12) Lien, Ren-Chieh ; Ma, Barry ; Lee, Craig M. ; Sanford, Thomas B. ; Mensah, Vigan ; Centurioni, Luca R. ; Cornuelle, Bruce D. ; Gopalakrishnan, Ganesh ; Gordon, Arnold L. ; Chang, Ming-Huei ; Jayne, Steven R. ; Yang, Yiing-Jang
    Current structure, transport, and water mass properties of the northward-flowing Kuroshio and the southward-flowing Luzon Undercurrent (LU) were observed for nearly one year, June 8, 2012–June 4, 2013, across the Kuroshio path at 18.75°N. Observations were made from four platforms: an array of six subsurface ADCP moorings, two Seagliders, fivepressure inverted echo sounders (PIES), and five horizontal electric field (HEF) sensors, providing the most detailed time series of the Kuroshio and Luzon Undercurrent water properties to date. Ocean state estimates of the western boundary current system were performed using the MIT general circulation model—four-dimensional variational assimilation (MITgcm-4D-Var) system. Prominent Kuroshio features from observations are simulated well by the numerical model. Annual mean Kuroshio transport, averaged over all platforms, is ~16 Sv with a standard deviation ~4 Sv. Kuroshio and LU transports and water mass pathways east of Luzon are revealed by Seaglider measurements. In a layer above the salinity maximum associated with North Pacific Tropical Water (NPTW), Kuroshio transport is ~7 Sv and contains North Equatorial Current (NEC) and Western Philippine Sea (WPS) waters, with an insignificant amount of South China Sea water on the shallow western flank. In an intermediate layer containing the core of the NPTW, Kuroshio transport is ~10 Sv, consisting mostly of NEC water. In the lower layer of the Kuroshio, transport is ~1.5 Sv of mostly North Pacific Intermediate Water (NPIW) as a part of WPS waters. Annual mean Luzon Undercurrent southward transport integrated to 1,000 m depth is ~2.7 Sv with a standard deviation ~2 Sv, carrying solely WPS waters below the salinity minimum of the NPIW. The transport of the western boundary current integrated over the full ocean depth east of Luzon Island is ~14 ± 4.5 Sv. Sources of the water masses in the Kuroshio and Luzon Undercurrent are confirmed qualitatively by the numerical model.
  • Article
    Observations of the cold wake of Typhoon Fanapi (2010)
    (John Wiley & Sons, 2013-01-19) Mrvaljevic, Rosalinda K. ; Black, Peter G. ; Centurioni, Luca R. ; Chang, Ya-Ting ; D'Asaro, Eric A. ; Jayne, Steven R. ; Lee, Craig M. ; Lien, Ren-Chieh ; Lin, I.-I. ; Morzel, Jan ; Niiler, Pearn P. ; Rainville, Luc ; Sanford, Thomas B.
    Several tens of thousands of temperature profiles are used to investigate the thermal evolution of the cold wake of Typhoon Fanapi, 2010. Typhoon Fanapi formed a cold wake in the Western North Pacific Ocean on 18 September characterized by a mixed layer that was >2.5 °C cooler than the surrounding water, and extending to >80 m, twice as deep as the preexisting mixed layer. The initial cold wake became capped after 4 days as a warm, thin surface layer formed. The thickness of the capped wake, defined as the 26 °C–27 °C layer, decreased, approaching the background thickness of this layer with an e-folding time of 23 days, almost twice the e-folding lifetime of the Sea Surface Temperature (SST) cold wake (12 days). The wake was advected several hundreds of kilometers from the storm track by a preexisting mesoscale eddy. The observations reveal new intricacies of cold wake evolution and demonstrate the challenges of describing the thermal structure of the upper ocean using sea surface information alone.
  • Article
    Typhoon-ocean interaction in the western North Pacific : Part 1
    (The Oceanography Society, 2011-12) D'Asaro, Eric A. ; Black, Peter G. ; Centurioni, Luca R. ; Harr, Patrick ; Jayne, Steven R. ; Lin, I.-I. ; Lee, Craig M. ; Morzel, Jan ; Mrvaljevic, Rosalinda K. ; Niiler, Pearn P. ; Rainville, Luc ; Sanford, Thomas B. ; Tang, Tswen Yung
    The application of new technologies has allowed oceanographers and meteorologists to study the ocean beneath typhoons in detail. Recent studies in the western Pacific Ocean reveal new insights into the influence of the ocean on typhoon intensity.
  • Article
    Northern Arabian Sea Circulation-Autonomous Research (NASCar) : a research initiative based on autonomous sensors
    (Oceanography Society, 2017-06) Centurioni, Luca R. ; Hormann, Verena ; Talley, Lynne D. ; Arzeno, Isabella B. ; Beal, Lisa M. ; Caruso, Michael J. ; Conry, Patrick ; Echols, Rosalind ; Fernando, Harindra J. S. ; Giddings, Sarah N. ; Gordon, Arnold L. ; Graber, Hans C. ; Harcourt, Ramsey R. ; Jayne, Steven R. ; Jensen, Tommy G. ; Lee, Craig M. ; Lermusiaux, Pierre F. J. ; L’Hegaret, Pierre ; Lucas, Andrew J. ; Mahadevan, Amala ; McClean, Julie L. ; Pawlak, Geno ; Rainville, Luc ; Riser, Stephen C. ; Seo, Hyodae ; Shcherbina, Andrey Y. ; Skyllingstad, Eric D. ; Sprintall, Janet ; Subrahmanyam, Bulusu ; Terrill, Eric ; Todd, Robert E. ; Trott, Corinne ; Ulloa, Hugo N. ; Wang, He
    The Arabian Sea circulation is forced by strong monsoonal winds and is characterized by vigorous seasonally reversing currents, extreme differences in sea surface salinity, localized substantial upwelling, and widespread submesoscale thermohaline structures. Its complicated sea surface temperature patterns are important for the onset and evolution of the Asian monsoon. This article describes a program that aims to elucidate the role of upper-ocean processes and atmospheric feedbacks in setting the sea surface temperature properties of the region. The wide range of spatial and temporal scales and the difficulty of accessing much of the region with ships due to piracy motivated a novel approach based on state-of-the-art autonomous ocean sensors and platforms. The extensive data set that is being collected, combined with numerical models and remote sensing data, confirms the role of planetary waves in the reversal of the Somali Current system. These data also document the fast response of the upper equatorial ocean to monsoon winds through changes in temperature and salinity and the connectivity of the surface currents across the northern Indian Ocean. New observations of thermohaline interleaving structures and mixing in setting the surface temperature properties of the northern Arabian Sea are also discussed.
  • Article
    Bay of Bengal intraseasonal oscillations and the 2018 monsoon onset
    (American Meteorological Society, 2021-10-01) Shroyer, Emily L. ; Tandon, Amit ; Sengupta, Debasis ; Fernando, Harindra J. S. ; Lucas, Andrew J. ; Farrar, J. Thomas ; Chattopadhyay, Rajib ; de Szoeke, Simon P. ; Flatau, Maria ; Rydbeck, Adam ; Wijesekera, Hemantha W. ; McPhaden, Michael J. ; Seo, Hyodae ; Subramanian, Aneesh C. ; Venkatesan, Ramasamy ; Joseph, Jossia K. ; Ramsundaram, S. ; Gordon, Arnold L. ; Bohman, Shannon M. ; Pérez, Jaynise ; Simoes-Sousa, Iury T. ; Jayne, Steven R. ; Todd, Robert E. ; Bhat, G. S. ; Lankhorst, Matthias ; Schlosser, Tamara L. ; Adams, Katherine ; Jinadasa, S. U. P. ; Mathur, Manikandan ; Mohapatra, Mrutyunjay ; Pattabhi Rama Rao, Eluri ; Sahai, Atul Kumar ; Sharma, Rashmi ; Lee, Craig ; Rainville, Luc ; Cherian, Deepak A. ; Cullen, Kerstin ; Centurioni, Luca R. ; Hormann, Verena ; MacKinnon, Jennifer A. ; Send, Uwe ; Anutaliya, Arachaporn ; Waterhouse, Amy F. ; Black, Garrett S. ; Dehart, Jeremy A. ; Woods, Kaitlyn M. ; Creegan, Edward ; Levy, Gad ; Kantha, Lakshmi ; Subrahmanyam, Bulusu
    In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST > 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.