Zhang Yu

No Thumbnail Available
Last Name
Zhang
First Name
Yu
ORCID
0000-0001-6183-0612

Search Results

Now showing 1 - 4 of 4
  • Article
    Studies of the Canadian Arctic Archipelago water transport and its relationship to basin-local forcings : results from AO-FVCOM
    (John Wiley & Sons, 2016-06-25) Zhang, Yu ; Chen, Changsheng ; Beardsley, Robert C. ; Gao, Guoping ; Lai, Zhigang ; Curry, Beth ; Lee, Craig M. ; Lin, Huichan ; Qi, Jianhua ; Xu, Qichun
    A high-resolution (up to 2 km), unstructured-grid, fully coupled Arctic sea ice-ocean Finite-Volume Community Ocean Model (AO-FVCOM) was employed to simulate the flow and transport through the Canadian Arctic Archipelago (CAA) over the period 1978–2013. The model-simulated CAA outflow flux was in reasonable agreement with the flux estimated based on measurements across Davis Strait, Nares Strait, Lancaster Sound, and Jones Sounds. The model was capable of reproducing the observed interannual variability in Davis Strait and Lancaster Sound. The simulated CAA outflow transport was highly correlated with the along-strait and cross-strait sea surface height (SSH) difference. Compared with the wind forcing, the sea level pressure (SLP) played a dominant role in establishing the SSH difference and the correlation of the CAA outflow with the cross-strait SSH difference can be explained by a simple geostrophic balance. The change in the simulated CAA outflow transport through Davis Strait showed a negative correlation with the net flux through Fram Strait. This correlation was related to the variation of the spatial distribution and intensity of the slope current over the Beaufort Sea and Greenland shelves. The different basin-scale surface forcings can increase the model uncertainty in the CAA outflow flux up to 15%. The daily adjustment of the model elevation to the satellite-derived SSH in the North Atlantic region outside Fram Strait could produce a larger North Atlantic inflow through west Svalbard and weaken the outflow from the Arctic Ocean through east Greenland.
  • Article
    Seasonal and interannual variability of the Arctic sea ice : a comparison between AO-FVCOM and observations
    (John Wiley & Sons, 2016-11-25) Zhang, Yu ; Chen, Changsheng ; Beardsley, Robert C. ; Gao, Guoping ; Qi, Jianhua ; Lin, Huichan
    A high-resolution (up to 2 km), unstructured-grid, fully ice-sea coupled Arctic Ocean Finite-Volume Community Ocean Model (AO-FVCOM) was used to simulate the sea ice in the Arctic over the period 1978–2014. The spatial-varying horizontal model resolution was designed to better resolve both topographic and baroclinic dynamics scales over the Arctic slope and narrow straits. The model-simulated sea ice was in good agreement with available observed sea ice extent, concentration, drift velocity and thickness, not only in seasonal and interannual variability but also in spatial distribution. Compared with six other Arctic Ocean models (ECCO2, GSFC, INMOM, ORCA, NAME, and UW), the AO-FVCOM-simulated ice thickness showed a higher mean correlation coefficient of ∼0.63 and a smaller residual with observations. Model-produced ice drift speed and direction errors varied with wind speed: the speed and direction errors increased and decreased as the wind speed increased, respectively. Efforts were made to examine the influences of parameterizations of air-ice external and ice-water interfacial stresses on the model-produced bias. The ice drift direction was more sensitive to air-ice drag coefficients and turning angles than the ice drift speed. Increasing or decreasing either 10% in water-ice drag coefficient or 10° in water-ice turning angle did not show a significant influence on the ice drift velocity simulation results although the sea ice drift speed was more sensitive to these two parameters than the sea ice drift direction. Using the COARE 4.0-derived parameterization of air-water drag coefficient for wind stress did not significantly influence the ice drift velocity simulation.
  • Article
    Observational and model studies of the circulation in the Gulf of Tonkin, South China Sea
    (John Wiley & Sons, 2013-12-03) Ding, Yang ; Chen, Changsheng ; Beardsley, Robert C. ; Bao, Xianwen ; Shi, Maochong ; Zhang, Yu ; Lai, Zhigang ; Li, Ruixiang ; Lin, Huichan ; Viet, Nguyen Trung
    Moored current measurements were made at one mooring site in the northern Gulf of Tonkin for about 1 year during 1988–1989. Analyses were performed to examine characteristics and variability of tidal and subtidal flows. Rotary spectra showed two peaks at diurnal and semidiurnal periods, with higher diurnal energy. Complex demodulations of diurnal and semidiurnal tidal currents indicated that the tidal current magnitudes varied significantly with seasons: more energetic in the stratified summer than in the vertically well-mixed winter. The observed subtidal currents were highly correlated with the surface wind in winter but not in summer; challenging the conceptual summertime anticyclonic circulation pattern derived using wind-driven homogenous circulation theory. The computed currents from a global ocean model were in good agreement with the observed currents. Similar to the current observations, the model-computed flow patterns were consistent with the conceptual wind-driven circulation pattern in winter but opposite in summer. Process-oriented experiments suggest that the summertime cyclonic circulation in the northern Gulf of Tonkin forms as a result of the combination of stratified wind-driven circulation and tidal-rectified inflow from Qiongzhou Strait. The interaction between the southwest monsoon and buoyancy-driven flow from Hong River can significantly intensify the cyclonic circulation near the surface, but its contribution to the vertically averaged flow of the cyclonic circulation is limited.
  • Article
    Observed wintertime tidal and subtidal currents over the continental shelf in the northern South China Sea
    (John Wiley & Sons, 2014-08-19) Li, Ruixiang ; Chen, Changsheng ; Xia, Huayong ; Beardsley, Robert C. ; Shi, Maochong ; Lai, Zhigang ; Lin, Huichan ; Feng, Yanqing ; Liu, Changjian ; Xu, Qichun ; Ding, Yang ; Zhang, Yu
    Synthesis analyses were performed to examine characteristics of tidal and subtidal currents at eight mooring sites deployed over the northern South China Sea (NSCS) continental shelf in the 2006–2007 and 2009–2010 winters. Rotary spectra and harmonic analysis results showed that observed tidal currents in the NSCS were dominated by baroclinic diurnal tides with phases varying both vertically and horizontally. This feature was supported by the CC-FVCOM results, which demonstrated that the diurnal tidal flow over this shelf was characterized by baroclinic Kelvin waves with vertical phase differences varying in different flow zones. The northeasterly wind-induced southwestward flow prevailed over the NSCS shelf during winter, with episodic appearances of mesoscale eddies and a bottom-intensified buoyancy-driven slope water intrusion. The moored current records captured a warm-core anticyclonic eddy, which originated from the southwestern coast of Taiwan and propagated southwestward along the slope consistent with a combination of β-plane and topographic Rossby waves. The eddy was surface-intensified with a swirl speed of >50 cm/s and a vertical scale of ∼400 m. In absence of eddies and onshore deep slope water intrusion, the observed southwestward flow was highly coherent with the northeasterly wind stress. Observations did not support the existence of the permanent wintertime South China Sea Warm Current (SCSWC). The definition of SCSWC, which was based mainly on thermal wind calculations with assumed level of no motion at the bottom, needs to be interpreted with caution since the observed circulation over the NSCS shelf in winter included both barotropic and baroclinic components.