Rabe Benjamin

No Thumbnail Available
Last Name
Rabe
First Name
Benjamin
ORCID
0000-0001-5794-9856

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Distribution of Pb-210 and Po-210 in the arctic water column during the 2007 sea-ice minimum: Particle export in the ice-covered basins.
    (Elsevier, 2018-10-22) Roca-Martí, Montserrat ; Puigcorbé, Viena ; Friedrich, Jana ; Rutgers van der Loeff, Michiel ; Rabe, Benjamin ; Korhonen, Meri ; Cámara Mor, Patricia ; Garcia-Orellana, Jordi ; Masqué, Pere
    210Pb and 210Po are naturally occurring radionuclides that are commonly used as a proxy for particle and carbon export. In this study, the distribution of the 210Po/210Pb pair was investigated in the water column of the Barents, Kara and Laptev Seas and the Nansen, Amundsen and Makarov Basins in order to understand the particle dynamics in the Arctic Ocean during the 2007 sea-ice minimum (August-September). Minimum activities of total 210Pb and 210Po were found in the upper and lower haloclines (approx. 60-130 m), which are partly attributed to particle scavenging over the shelves, boundary current transport and subsequent advection of the water with low 210Pb and 210Po activities into the central Arctic. Widespread and substantial (>50%) deficits of 210Po with respect to 210Pb were detected from surface waters to 200 m on the shelves, but also in the basins. This was particularly important in the Makarov Basin where, despite very low chlorophyll-a levels, estimates of annual new primary production were three times higher than in the Eurasian Basin. In the Nansen, Amundsen and Makarov 32 Basins, estimates of annual new primary production correlated with the deficits of 210Po in the upper 200 m of the water column, suggesting that in situ production and subsequent export of biogenic material were the mechanisms that controlled the removal of 210Po in the central Arctic. Unlike 210Po, 234Th deficits measured during the same expedition were found to be very small and not significant below 25 m in the basins (Cai et al., 2010), which indicates, given the shorter half-life of 234Th, that particle export fluxes in the central Arctic would have been higher before July-August in 2007 than later in the season.
  • Preprint
    An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006-2008 period
    ( 2010-12-10) Rabe, Benjamin ; Karcher, Michael ; Schauer, Ursula ; Toole, John M. ; Krishfield, Richard A. ; Pisarev, Sergey ; Kauker, Frank ; Gerdes, Rudiger ; Kikuchi, Takashi
    Unprecedented summer-season sampling of the Arctic Ocean during the period 2006−2008 makes possible a quasi-synoptic estimate of liquid freshwater (LFW) inventories in the Arctic Ocean basins. In comparison to observations from 1992−1999, LFW content relative to a salinity of 35 in the layer from the surface to the 34 isohaline increased by 8400 ± 2000 km3 in the Arctic Ocean (water depth greater than 500m). This is close to the annual export of freshwater (liquid and solid) from the Arctic Ocean reported in the literature. Observations and a model simulation show regional variations in LFW were both due to changes in the depth of the lower halocline, often forced by regional wind-induced Ekman pumping, and a mean freshening of the water column above this depth, associated with an increased net sea ice melt and advection of increased amounts of river water from the Siberian shelves. Over the whole Arctic Ocean, changes in the observed mean salinity above the 34 isohaline dominated estimated changes in LFW content; the contribution to LFW change by bounding isohaline depth changes was less than a quarter of the salinity contribution, and non-linear effects due to both factors were negligible.