First Matthew R.

No Thumbnail Available
Last Name
First
First Name
Matthew R.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Water quality and planktonic microbial assemblages of isolated wetlands in an agricultural landscape
    ( 2011-07) Atkinson, Carla L. ; Golladay, Stephen W. ; First, Matthew R.
    Wetlands provide ecosystem services including flood protection, water quality enhancement, food chain support, carbon sequestration, and support regional biodiversity. Wetlands occur in human-altered landscapes, and the ongoing ability of these wetlands to provide ecosystem services is lacking. Additionally, the apparent lack of connection of some wetlands, termed geographically isolated, to permanent waters has resulted in little regulatory recognition. We examined the influence of intensive agriculture on water quality and planktonic microbial assemblages of intermittently inundated wetlands. We sampled 10 reference and 10 agriculturally altered wetlands in the Gulf Coastal Plain of Georgia. Water quality measures included pH, alkalinity, dissolved organic carbon, nutrients (nitrate, ammonium, and phosphate), and filterable solids (dry mass and ash-free dry mass). We measured abundance and relative size distribution of the planktonic microbial assemblage (< 45 μm) using flow cytometry. Water quality in agricultural wetlands was characterized by elevated nutrients, pH, and suspended solids. Autotrophic microbial cells were largely absent from both wetland types. Heterotrophic microbial abundance was influenced by nutrients and suspended matter concentration. Agriculture caused changes in microbial assemblages forming the base of wetland food webs. Yet, these wetlands potentially support important ecological services in a highly altered landscape.
  • Article
    Stream nutrient enrichment has a greater effect on coarse than on fine benthic organic matter
    (Society for Freshwater Science, 2013-09-17) Tant, Cynthia J. ; Rosemond, Amy D. ; First, Matthew R.
    Nutrient enrichment affects bacteria and fungi associated with detritus, but little is known about how biota associated with different size fractions of organic matter respond to nutrients. Bacteria dominate on fine (<1 mm) and fungi dominate on coarse (>1 mm) fractions, which are used by different groups of detritivores. We measured the effect of experimental nutrient enrichment on fungal and bacterial biomass, microbial respiration, and detrital nutrient content on benthic fine particulate organic matter (FPOM) and coarse particulate organic matter (CPOM). We collected FPOM and CPOM from 1 reference and 1 enriched stream. CPOM substrates consisted of 2 litter types with differing initial C:nutrient ratios (Acer rubrum L. and Rhododendron maximum L.). Fungal and bacterial biomass, respiration, and detrital nutrient content changed with nutrient enrichment, and effects were greater on CPOM than on FPOM. Fungal biomass dominated on CPOM (99% total microbial biomass), whereas bacterial biomass dominated on FPOM (95% total microbial biomass). These contributions were unchanged by nutrient enrichment. Bacterial and fungal biomass increased more on CPOM than FPOM. Respiration increased more on CPOM (up to 300% increase) than FPOM (50% increase), indicating important C-loss pathways from these resources. Microbial biomass and detrital nutrient content were positively related. Greater changes in nutrient content were observed on CPOM than on FPOM, and changes in detrital C:P were greater than changes in detrital C:N. Threshold elemental ratios analyses indicated that enrichment may reduce P limitation for shredders and exacerbate C limitation for collector-gatherers. Changes in CPOM-dominated pathways are critical in predicting shifts in detrital resource quality and C flow that may result from nutrient enrichment of detritus-based systems.