First Matthew R.

No Thumbnail Available
Last Name
First
First Name
Matthew R.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Stream nutrient enrichment has a greater effect on coarse than on fine benthic organic matter
    (Society for Freshwater Science, 2013-09-17) Tant, Cynthia J. ; Rosemond, Amy D. ; First, Matthew R.
    Nutrient enrichment affects bacteria and fungi associated with detritus, but little is known about how biota associated with different size fractions of organic matter respond to nutrients. Bacteria dominate on fine (<1 mm) and fungi dominate on coarse (>1 mm) fractions, which are used by different groups of detritivores. We measured the effect of experimental nutrient enrichment on fungal and bacterial biomass, microbial respiration, and detrital nutrient content on benthic fine particulate organic matter (FPOM) and coarse particulate organic matter (CPOM). We collected FPOM and CPOM from 1 reference and 1 enriched stream. CPOM substrates consisted of 2 litter types with differing initial C:nutrient ratios (Acer rubrum L. and Rhododendron maximum L.). Fungal and bacterial biomass, respiration, and detrital nutrient content changed with nutrient enrichment, and effects were greater on CPOM than on FPOM. Fungal biomass dominated on CPOM (99% total microbial biomass), whereas bacterial biomass dominated on FPOM (95% total microbial biomass). These contributions were unchanged by nutrient enrichment. Bacterial and fungal biomass increased more on CPOM than FPOM. Respiration increased more on CPOM (up to 300% increase) than FPOM (50% increase), indicating important C-loss pathways from these resources. Microbial biomass and detrital nutrient content were positively related. Greater changes in nutrient content were observed on CPOM than on FPOM, and changes in detrital C:P were greater than changes in detrital C:N. Threshold elemental ratios analyses indicated that enrichment may reduce P limitation for shredders and exacerbate C limitation for collector-gatherers. Changes in CPOM-dominated pathways are critical in predicting shifts in detrital resource quality and C flow that may result from nutrient enrichment of detritus-based systems.
  • Preprint
    Leaf litter nutrient uptake in an intermittent blackwater river : influence of tree species and associated biotic and abiotic drivers
    ( 2014-12) Mehring, Andrew S. ; Kuehn, Kevin A. ; Thompson, Aaron ; Pringle, Catherine M. ; Rosemond, Amy D. ; First, Matthew R. ; Lowrance, R. Richard ; Vellidis, George
    Organic matter may sequester nutrients as it decomposes, increasing in total N and P mass via multiple uptake pathways. During leaf litter decomposition, microbial biomass and accumulated inorganic materials immobilize and retain nutrients, and therefore both biotic and abiotic drivers may influence detrital nutrient content. We examined the relative importance of these types of nutrient immobilization and compared patterns of nutrient retention in recalcitrant and labile leaf litter. Leaf packs of water oak (Quercus nigra), red maple (Acer rubrum) and Ogeechee tupelo (Nyssa ogeche) were incubated for 431 days in an intermittent blackwater stream and periodically analyzed for mass loss, nutrient and metal content, and microbial biomass. These data informed regression models explaining temporal changes in detrital nutrient content. Informal exploratory models compared estimated biologically-associated nutrient stocks (fungal, bacterial, leaf tissue) to observed total detrital nutrient stocks. We predicted that (1) labile and recalcitrant leaf litter would act as sinks at different points in the breakdown process, (2) plant and microbial biomass would not account for the entire mass of retained nutrients, and (3) total N content would be more closely approximated than total P content solely from nutrients stored in leaf tissue and microbial biomass, due to stronger binding of P to inorganic matter. Labile litter had higher nutrient concentrations throughout the study. However, lower mass loss of recalcitrant litter facilitated greater nutrient retention over longer incubations, suggesting that it may be an important long-term sink. N and P content were significantly related to both microbial biomass and metal content, with slightly stronger correlation to metal content over longer incubations.