Hayes John M.

No Thumbnail Available
Last Name
Hayes
First Name
John M.
ORCID

Search Results

Now showing 1 - 8 of 8
  • Article
    An Introduction to Isotopic Calculations
    (Woods Hole Oceanographic Institution, 2004-09-30) Hayes, John M.
    These notes provide an introduction to: • Methods for the expression of isotopic abundances, • Isotopic mass balances, and • Isotope effects and their consequences in open and closed systems.
  • Article
    Compound-specific radiocarbon dating of the varved Holocene sedimentary record of Saanich Inlet, Canada
    (American Geophysical Union, 2004-05-01) Smittenberg, R. H. ; Hopmans, Ellen C. ; Schouten, Stefan ; Hayes, John M. ; Eglinton, Timothy I. ; Sinninghe Damste, Jaap S.
    The radiocarbon contents of various biomarkers extracted from the varve-counted sediments of Saanich Inlet, Canada, were determined to assess their applicability for dating purposes. Calibrated ages obtained from the marine planktonic archaeal biomarker crenarchaeol compared favorably with varve-count ages. The same conclusion could be drawn for a more general archaeal biomarker (GDGT-0), although this biomarker proved to be less reliable due to its less-specific origin. The results also lend support to earlier indications that marine crenarchaeota use dissolved inorganic carbon (DIC) as their carbon source. The average reservoir age offset ΔR of 430 years, determined using the crenarchaeol radiocarbon ages, varied by ±110 years. This may be caused by natural variations in ocean-atmosphere mixing or upwelling at the NE Pacific coast but variability may also be due to an inconsistency in the marine calibration curve when used at sites with high reservoir ages.
  • Article
    Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments
    (American Geophysical Union, 2004-10-15) McDuffee, Kelsey E. ; Eglinton, Timothy I. ; Sessions, Alex L. ; Sylva, Sean P. ; Wagner, Thomas ; Hayes, John M.
    Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (
  • Article
    Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments
    (American Society for Microbiology, 2001-04) Orphan, Victoria J. ; Hinrichs, Kai-Uwe ; Ussler, William ; Paull, Charles K. ; Taylor, L. T. ; Sylva, Sean P. ; Hayes, John M. ; DeLong, Edward F.
    The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant 13C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. 13C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of delta -proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong 13C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant 13C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments.
  • Article
    Antarctic sediment chronology by programmed-temperature pyrolysis : methodology and data treatment
    (American Geophysical Union, 2008-04-02) Rosenheim, Brad E. ; Day, Mary Beth ; Domack, Eugene ; Schrum, Heather ; Benthien, Albert ; Hayes, John M.
    We report a detailed programmed-temperature pyrolysis/combustion methodology for radiocarbon (14C) dating of Antarctic sub-ice shelf sediments. The method targets the autochthonous organic component in sediments that contain a distribution of acid-insoluble organic components from several sources of different ages. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves by yielding maximum age constraints significantly younger than bulk radiocarbon dates from the same sediment horizons. The method proves adequate in determining isotope ratios of the pre-aged carbon end-member; however, the isotopic compositions of the low-temperature measurements indicate that no samples completely avoided mixing with some proportion of pre-aged organic material. Dating the unresolved but desired young end-member must rely on indirect methods, but a simple mixing model cannot be developed without knowledge of the sedimentation rate or comparable constraints. A mathematical approach allowing for multiple mixing components yields a maximum likelihood age, a first-order approximation of the relative proportion of the autochthonous component, and the temperature at which allochthonous carbon begins to volatilize and mix with the autochthonous component. It is likely that our estimation of the cutoff temperature will be improved with knowledge of the pyrolysis kinetics of the major components. Chronology is improved relative to bulk acid-insoluble organic material ages from nine temperature interval dates down to two, but incorporation of inherently more pre-aged carbon in the first division becomes more apparent with fewer and larger temperature intervals.
  • Article
    Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of aquificales representatives
    (American Society for Microbiology, 2001-11) Jahnke, Linda L. ; Eder, Wolfgang ; Huber, Robert ; Hope, Janet M. ; Hinrichs, Kai-Uwe ; Hayes, John M. ; Des Marais, David J. ; Cady, Sherry L. ; Summons, Roger E.
    The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C20:1 and cy-C21 fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C18:0. These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C18 and C20 alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C20:1 and cy-C21, plus a series of iso-branched fatty acids (i-C15:0 to i-C21:0), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in 13C relative to source water CO2 by 10.9 and 17.2per thousand , respectively. The C20-21 fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6per thousand , respectively. The biomass of T. ruber grown on CO2 was depleted in 13C by only 3.3per thousand relative to C source. In contrast, biomass was depleted by 19.7per thousand when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3per thousand ). The depletion in the C20-21 fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO2. Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.
  • Article
    An evaluation of 14C age relationships between co-occurring foraminifera, alkenones, and total organic carbon in continental margin sediments
    (American Geophysical Union, 2005-01-25) Mollenhauer, Gesine ; Kienast, Markus ; Lamy, Frank ; Meggers, Helge ; Schneider, Ralph R. ; Hayes, John M. ; Eglinton, Timothy I.
    Radiocarbon age relationships between co-occurring planktic foraminifera, alkenones and total organic carbon in sediments from the continental margins of Southern Chile, Northwest Africa and the South China Sea were compared with published results from the Namibian margin. Age relationships between the sediment components are site-specific and relatively constant over time. Similar to the Namibian slope, where alkenones have been reported to be 1000 to 4500 years older than co-occurring foraminifera, alkenones were significantly (~1000 yrs) older than co-occurring foraminifera in the Chilean margin sediments. In contrast, alkenones and foraminifera were of similar age (within 2σ error or better) in the NW African and South China Sea sediments. Total-organic-matter and alkenone ages were similar off Namibia (age difference TOC-alkenones: 200-700 years), Chile (100-450 years), and NW Africa (360-770 years), suggesting minor contributions of pre-aged terrigenous material. In the South China Sea total organic carbon is significantly (2000-3000 yrs) older due to greater inputs of pre-aged terrigenous material. Age offsets between alkenones and planktic foraminifera are attributed to lateral advection of organic matter. Physical characteristics of the depositional setting, such as sea-floor morphology, shelf width, and sediment composition, may control the age of co-occurring 2 sediment components. In particular, offsets between alkenones and foraminifera appear to be greatest in deposition centers in morphologic depressions. Aging of organic matter is promoted by transport. Age offsets are correlated with organic richness, suggesting that formation of organic aggregate is a key process.
  • Article
    Organic carbon aging during across‐shelf transport
    (John Wiley & Sons, 2018-08-22) Bao, Rui ; Uchida, Masao ; Zhao, Meixun ; Haghipour, Negar ; Montlucon, Daniel B. ; McNichol, Ann P. ; Wacker, Lukas ; Hayes, John M. ; Eglinton, Timothy I.
    Compound‐specific radiocarbon analysis was performed on different grain‐size fractions of surficial sediments to examine and compare lateral transport times (LTTs) of organic carbon. 14C aging of long‐chain leaf wax fatty acids along two dispersal pathways of fluvially derived material on adjacent continental margins implies LTTs over distances of ~30 to 500 km that range from hundreds to thousands of years. The magnitude of aging differs among grain size fractions. Our finding suggests that LTTs vary both temporally and spatially as a function of the specific properties of different continental shelf settings. Observations suggest that 14C aging is widespread during lateral transport over continental shelves, with hydrodynamic particle sorting inducing age variations among organic components residing in different grain sizes. Consideration of these phenomena is of importance for understanding carbon cycle processes and interpretation on sedimentary records on continental margins.