Medley Brooke

No Thumbnail Available
Last Name
Medley
First Name
Brooke
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Ice sheet record of recent sea-ice behavior and polynya variability in the Amundsen Sea, West Antarctica
    (John Wiley & Sons, 2013-01-25) Criscitiello, Alison S. ; Das, Sarah B. ; Evans, Matthew J. ; Frey, Karen E. ; Conway, Howard ; Joughin, Ian ; Medley, Brooke ; Steig, Eric J.
    Our understanding of past sea-ice variability is limited by the short length of satellite and instrumental records. Proxy records can extend these observations but require further development and validation. We compare methanesulfonic acid (MSA) and chloride (Cl–) concentrations from a new firn core from coastal West Antarctica with satellite-derived observations of regional sea-ice concentration (SIC) in the Amundsen Sea (AS) to evaluate spatial and temporal correlations from 2002–2010. The high accumulation rate (~39 g∙cm–2∙yr–1) provides monthly resolved records of MSA and Cl–, allowing detailed investigation of how regional SIC is recorded in the ice-sheet stratigraphy. Over the period 2002–2010 we find that the ice-sheet chemistry is significantly correlated with SIC variability within the AS and Pine Island Bay polynyas. Based on this result, we evaluate the use of ice-core chemistry as a proxy for interannual polynya variability in this region, one of the largest and most persistent polynya areas in Antarctica. MSA concentrations correlate strongly with summer SIC within the polynya regions, consistent with MSA at this site being derived from marine biological productivity during the spring and summer. Cl– concentrations correlate strongly with winter SIC within the polynyas as well as some regions outside the polynyas, consistent with Cl– at this site originating primarily from winter sea-ice formation. Spatial correlations were generally insignificant outside of the polynya areas, with some notable exceptions. Ice-core glaciochemical records from this dynamic region thus may provide a proxy for reconstructing AS and Pine Island Bay polynya variability prior to the satellite era.
  • Article
    Tropical Pacific influence on the source and transport of marine aerosols to West Antarctica
    (American Meteorological Society, 2014-02-01) Criscitiello, Alison S. ; Das, Sarah B. ; Karnauskas, Kristopher B. ; Evans, Matthew J. ; Frey, Karen E. ; Joughin, Ian ; Steig, Eric J. ; McConnell, Joseph R. ; Medley, Brooke
    The climate of West Antarctica is strongly influenced by remote forcing from the tropical Pacific. For example, recent surface warming over West Antarctica reflects atmospheric circulation changes over the Amundsen Sea, driven by an atmospheric Rossby wave response to tropical sea surface temperature (SST) anomalies. Here, it is demonstrated that tropical Pacific SST anomalies also influence the source and transport of marine-derived aerosols to the West Antarctic Ice Sheet. Using records from four firn cores collected along the Amundsen coast of West Antarctica, the relationship between sea ice–modulated chemical species and large-scale atmospheric variability in the tropical Pacific from 1979 to 2010 is investigated. Significant correlations are found between marine biogenic aerosols and sea salts, and SST and sea level pressure in the tropical Pacific. In particular, La Niña–like conditions generate an atmospheric Rossby wave response that influences atmospheric circulation over Pine Island Bay. Seasonal regression of atmospheric fields on methanesulfonic acid (MSA) reveals a reduction in onshore wind velocities in summer at Pine Island Bay, consistent with enhanced katabatic flow, polynya opening, and coastal dimethyl sulfide production. Seasonal regression of atmospheric fields on chloride (Cl−) reveals an intensification in onshore wind velocities in winter, consistent with sea salt transport from offshore source regions. Both the source and transport of marine aerosols to West Antarctica are found to be modulated by similar atmospheric dynamics in response to remote forcing. Finally, the regional ice-core array suggests that there is both a temporally and a spatially varying response to remote tropical forcing.