Browsing by Subject "14C"
Results Per Page
Sort Options
-
DatasetConcentrations and radiocarbon signatures of SPE-DOC extracted from seawater samples on GO-SHIP cruises P16N, P18, and IO7N in the North Pacific, Eastern Pacific, and Western Indian Oceans(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2022-01-19) Druffel, Ellen R.M. ; Lewis, ChristianThis dataset includes concentrations and radiocarbon signatures of solid-phase extracted dissolved organic carbon (SPE-DOC) from seawater samples. Water samples were collected on GO-SHIP cruises P16N, P18, and IO7N in the North Pacific, Eastern Pacific, and Western Indian Oceans from 2015 to 2018. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/853101
-
ArticleDissolved Organic Radiocarbon in the West Indian Ocean(American Geophysical Union, 2023-10-02) Druffel, Ellen R. M. ; Lewis, Christian B. ; Griffin, Sheila ; Flaherty, Alessandra ; Rudresh, Megha ; Hauksson, Niels E. ; Key, Robert M. ; McNichol, Ann P. ; Hwang, Jeomshik ; Walker, Brett D.We report marine dissolved organic carbon (DOC) concentrations, and DOC Δ14C and δ13C in seawater collected from the West Indian Ocean during the GO-SHIP I07N cruise in 2018. We find bomb 14C in DOC from the upper 1,000 m of the water column. There is no significant change in ∆14C of DOC in deep water northward, unlike that of dissolved inorganic carbon (DIC), suggesting that transport of deep water northward is not controlling the 14C age of DOC. Variability of DOC ∆14C, including high values in the deep waters, is more pronounced than in other oceans, suggesting that dissolution of surface derived particulate organic carbon is a source of modern carbon to deep DOC in the West Indian Ocean. Low δ13C are present at two of the five stations studied, suggesting a source of low δ13C DOC, or additional microbial utilization of deep DOC.
-
ArticleRapid radiocarbon (14C) analysis of coral and carbonate samples using a continuous-flow accelerator mass spectrometry (CFAMS) system(American Geophysical Union, 2011-11-05) McIntyre, Cameron P. ; Roberts, Mark L. ; Burton, Joshua R. ; McNichol, Ann P. ; Burke, Andrea ; Robinson, Laura F. ; von Reden, Karl F. ; Jenkins, William J.Radiocarbon analyses of carbonate materials provide critical information for understanding the last glacial cycle, recent climate history and paleoceanography. Methods that reduce the time and cost of radiocarbon (14C) analysis are highly desirable for large sample sets and reconnaissance type studies. We have developed a method for rapid radiocarbon analysis of carbonates using a novel continuous-flow accelerator mass spectrometry (CFAMS) system. We analyzed a suite of deep-sea coral samples and compared the results with those obtained using a conventional AMS system. Measurement uncertainty is <0.02 Fm or 160 Ryr for a modern sample and the mean background was 37,800 Ryr. Radiocarbon values were repeatable and in good agreement with those from the conventional AMS system. Sample handling and preparation is relatively simple and the method offered a significant increase in speed and cost effectiveness. We applied the method to coral samples from the Eastern Pacific Ocean to obtain an age distribution and identify samples for further analysis. This paper is intended to update the paleoceanographic community on the status of this new method and demonstrate its feasibility as a choice for rapid and affordable radiocarbon analysis.