Visiting Investigators
Permanent URI for this collection
Scores of distinguished biologists from around the world come to the MBL to collaborate and conduct research. They use marine and other organisms as model systems for their research.
These researchers participate in a number of established MBL groups including but not limited to:
- MBL Summer Research Fellows
- Dart Scholars
- Grass Faculty Awardees
- NeuroImaging Cluster
- Grass Fellows
- Whitman Center
Browse
Browsing Visiting Investigators by Subject "Actin"
Results Per Page
Sort Options
-
ArticleDirection of actin flow dictates integrin LFA-1 orientation during leukocyte migration(Nature Publishing Group, 2017-12-11) Nordenfelt, Pontus ; Moore, Travis I. ; Mehta, Shalin B. ; Kalappurakkal, Joseph Mathew ; Swaminathan, Vinay ; Koga, Nobuyasu ; Lambert, Talley J. ; Baker, David ; Waters, Jennifer C. ; Oldenbourg, Rudolf ; Tani, Tomomi ; Mayor, Satyajit ; Waterman, Clare M. ; Springer, TimothyIntegrin αβ heterodimer cell surface receptors mediate adhesive interactions that provide traction for cell migration. Here, we test whether the integrin, when engaged to an extracellular ligand and the cytoskeleton, adopts a specific orientation dictated by the direction of actin flow on the surface of migrating cells. We insert GFP into the rigid, ligand-binding head of the integrin, model with Rosetta the orientation of GFP and its transition dipole relative to the integrin head, and measure orientation with fluorescence polarization microscopy. Cytoskeleton and ligand-bound integrins orient in the same direction as retrograde actin flow with their cytoskeleton-binding β-subunits tilted by applied force. The measurements demonstrate that intracellular forces can orient cell surface integrins and support a molecular model of integrin activation by cytoskeletal force. Our results place atomic, Å-scale structures of cell surface receptors in the context of functional and cellular, μm-scale measurements.
-
ArticleRegulation of a formin complex by the microtubule plus end protein tea1p(Rockefeller University Press, 2004-06-07) Feierbach, Becket ; Verde, Fulvia ; Chang, FredThe plus ends of microtubules have been speculated to regulate the actin cytoskeleton for the proper positioning of sites of cell polarization and cytokinesis. In the fission yeast Schizosaccharomyces pombe, interphase microtubules and the kelch repeat protein tea1p regulate polarized cell growth. Here, we show that tea1p is directly deposited at cell tips by microtubule plus ends. Tea1p associates in large "polarisome" complexes with bud6p and for3p, a formin that assembles actin cables. Tea1p also interacts in a separate complex with the CLIP-170 protein tip1p, a microtubule plus end–binding protein that anchors tea1p to the microtubule plus end. Localization experiments suggest that tea1p and bud6p regulate formin distribution and actin cable assembly. Although single mutants still polarize, for3{Delta}bud6{Delta}tea1{Delta} triple-mutant cells lack polarity, indicating that these proteins contribute overlapping functions in cell polarization. Thus, these experiments begin to elucidate how microtubules contribute to the proper spatial regulation of actin assembly and polarized cell growth.