Baker Michael G.

No Thumbnail Available
Last Name
Baker
First Name
Michael G.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Teleseismic earthquake wavefields observed on the ross ice shelf
    (Cambridge University Press, 2020-10-14) Baker, Michael G. ; Aster, Richard C. ; Wiens, Douglas A. ; Nyblade, Andrew A. ; Bromirski, Peter D. ; Gerstoft, Peter ; Stephen, Ralph A.
    Observations of teleseismic earthquakes using broadband seismometers on the Ross Ice Shelf (RIS) must contend with environmental and structural processes that do not exist for land-sited seismometers. Important considerations are: (1) a broadband, multi-mode ambient wavefield excited by ocean gravity wave interactions with the ice shelf; (2) body wave reverberations produced by seismic impedance contrasts at the ice/water and water/seafloor interfaces and (3) decoupling of the solid Earth horizontal wavefield by the sub-shelf water column. We analyze seasonal and geographic variations in signal-to-noise ratios for teleseismic P-wave (0.5–2.0 s), S-wave (10–15 s) and surface wave (13–25 s) arrivals relative to the RIS noise field. We use ice and water layer reverberations generated by teleseismic P-waves to accurately estimate the sub-station thicknesses of these layers. We present observations consistent with the theoretically predicted transition of the water column from compressible to incompressible mechanics, relevant for vertically incident solid Earth waves with periods longer than 3 s. Finally, we observe symmetric-mode Lamb waves generated by teleseismic S-waves incident on the grounding zones. Despite their complexity, we conclude that teleseismic coda can be utilized for passive imaging of sub-shelf Earth structure, although longer deployments relative to conventional land-sited seismometers will be necessary to acquire adequate data.
  • Article
    Near-surface environmentally forced changes in the Ross Ice Shelf observed with ambient seismic noise
    (John Wiley & Sons, 2018-10-16) Chaput, Julien ; Aster, Richard C. ; McGrath, Daniel ; Baker, Michael G. ; Anthony, Robert E. ; Gerstoft, Peter ; Bromirski, Peter D. ; Nyblade, Andrew A. ; Stephen, Ralph A. ; Wiens, Douglas A. ; Das, Sarah B. ; Stevens, Laura A.
    Continuous seismic observations across the Ross Ice Shelf reveal ubiquitous ambient resonances at frequencies >5 Hz. These firn‐trapped surface wave signals arise through wind and snow bedform interactions coupled with very low velocity structures. Progressive and long‐term spectral changes are associated with surface snow redistribution by wind and with a January 2016 regional melt event. Modeling demonstrates high spectral sensitivity to near‐surface (top several meters) elastic parameters. We propose that spectral peak changes arise from surface snow redistribution in wind events and to velocity drops reflecting snow lattice weakening near 0°C for the melt event. Percolation‐related refrozen layers and layer thinning may also contribute to long‐term spectral changes after the melt event. Single‐station observations are inverted for elastic structure for multiple stations across the ice shelf. High‐frequency ambient noise seismology presents opportunities for continuous assessment of near‐surface ice shelf or other firn environments.
  • Article
    Seasonal and spatial variations in the ocean-coupled ambient wavefield of the Ross Ice Shelf
    (Cambridge University Press, 2019-09-30) Baker, Michael G. ; Aster, Richard C. ; Anthony, Robert E. ; Chaput, Julien ; Wiens, Douglas A. ; Nyblade, Andrew A. ; Bromirski, Peter D. ; Gerstoft, Peter ; Stephen, Ralph A.
    The Ross Ice Shelf (RIS) is host to a broadband, multimode seismic wavefield that is excited in response to atmospheric, oceanic and solid Earth source processes. A 34-station broadband seismographic network installed on the RIS from late 2014 through early 2017 produced continuous vibrational observations of Earth's largest ice shelf at both floating and grounded locations. We characterize temporal and spatial variations in broadband ambient wavefield power, with a focus on period bands associated with primary (10–20 s) and secondary (5–10 s) microseism signals, and an oceanic source process near the ice front (0.4–4.0 s). Horizontal component signals on floating stations overwhelmingly reflect oceanic excitations year-round due to near-complete isolation from solid Earth shear waves. The spectrum at all periods is shown to be strongly modulated by the concentration of sea ice near the ice shelf front. Contiguous and extensive sea ice damps ocean wave coupling sufficiently so that wintertime background levels can approach or surpass those of land-sited stations in Antarctica.