McGillicuddy Dennis J.

No Thumbnail Available
Last Name
McGillicuddy
First Name
Dennis J.
ORCID
0000-0002-1437-2425

Search Results

Now showing 1 - 20 of 104
  • Article
    Ephemeral surface chlorophyll enhancement at the New England shelf break driven by Ekman restratification
    (American Geophysical Union, 2021-12-28) Oliver, Hilde ; Zhang, Weifeng G. ; Archibald, Kevin M. ; Hirzel, Andrew ; Smith, Walker O. ; Sosik, Heidi M. ; Stanley, Rachel H. R. ; McGillicuddy, Dennis J.
    The Mid-Atlantic Bight (MAB) hosts a large and productive marine ecosystem supported by high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB shelf-break front have been detected in synoptic measurements, yet this feature is not present in seasonal means. To understand why, we assess the conditions associated with enhanced surface chlorophyll at the shelf break. We employ in-situ and remote sensing data, and a 2-dimensional model to show that Ekman restratification driven by upfront winds drives ephemerally enhanced chlorophyll concentrations at the shelf-break front in spring. Using 8-day composite satellite-measured surface chlorophyll concentration data from 2003–2020, we constructed a daily running mean (DRM) climatology of the cross-shelf chlorophyll distribution for the northern MAB region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology, it is not captured in the seasonal climatology due to its short duration of less than a week. In-situ measurements of the frontal chlorophyll enhancement reveal that chlorophyll is highest in spring when the shelf-break front slumps offshore from its steep wintertime position causing restratification in the upper part of the water column. Several restratification mechanisms are possible, but the first day of enhanced chlorophyll at the shelf break corresponds to increasing upfront winds, suggesting that the frontal restratification is driven by offshore Ekman transport of the shelf water over the denser slope water. The 2-dimensional model shows that upfront winds can indeed drive Ekman restratification and alleviate light limitation of phytoplankton growth at the shelf-break front.
  • Article
    Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea
    (Nature Publishing Group, 2018-05-09) Gaube, Peter ; Braun, Camrin D. ; Lawson, Gareth L. ; McGillicuddy, Dennis J. ; Penna, Alice Della ; Skomal, Gregory B. ; Fischer, Chris ; Thorrold, Simon R.
    Satellite-tracking of mature white sharks (Carcharodon carcharias) has revealed open-ocean movements spanning months and covering tens of thousands of kilometers. But how are the energetic demands of these active apex predators met as they leave coastal areas with relatively high prey abundance to swim across the open ocean through waters often characterized as biological deserts? Here we investigate mesoscale oceanographic variability encountered by two white sharks as they moved through the Gulf Stream region and Sargasso Sea in the North Atlantic Ocean. In the vicinity of the Gulf Stream, the two mature female white sharks exhibited extensive use of the interiors of clockwise-rotating anticyclonic eddies, characterized by positive (warm) temperature anomalies. One tagged white shark was also equipped with an archival tag that indicated this individual made frequent dives to nearly 1,000 m in anticyclones, where it was presumably foraging on mesopelagic prey. We propose that warm temperature anomalies in anticyclones make prey more accessible and energetically profitable to adult white sharks in the Gulf Stream region by reducing the physiological costs of thermoregulation in cold water. The results presented here provide valuable new insight into open ocean habitat use by mature, female white sharks that may be applicable to other large pelagic predators.
  • Preprint
    Interannual variability of Alexandrium fundyense abundance and shellfish toxicity in the Gulf of Maine
    ( 2005-05-03) McGillicuddy, Dennis J. ; Anderson, Donald M. ; Solow, Andrew R. ; Townsend, David W.
    Six years of oceanographic surveys of Alexandrium fundyense concentrations in the Gulf of Maine are combined with shellfish toxicity records from coastal monitoring stations to assess covariations of these quantities on seasonal to interannual time scales. Annual mean gulf-wide cell abundance varies by less than one order of magnitude during the time interval examined (1993-2002). Fluctuations in gulf-wide annual mean cell abundance and shellfish toxicity are not related in a consistent manner. This suggests that interannual variations in toxicity may be regulated by transport and delivery of offshore cell populations, rather than the absolute abundance of the source populations themselves.
  • Article
    Assessment of skill and portability in regional marine biogeochemical models : role of multiple planktonic groups
    (American Geophysical Union, 2007-08-02) Friedrichs, Marjorie A. M. ; Dusenberry, Jeffrey A. ; Anderson, Laurence A. ; Armstrong, Robert A. ; Chai, Fei ; Christian, James R. ; Doney, Scott C. ; Dunne, John P. ; Fujii, Masahiko ; Hood, Raleigh R. ; McGillicuddy, Dennis J. ; Moore, J. Keith ; Schartau, Markus ; Spitz, Yvette H. ; Wiggert, Jerry D.
    Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models' performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways.
  • Article
    Tracer-based assessment of the origin and biogeochemical transformation of a cyclonic eddy in the Sargasso Sea
    (American Geophysical Union, 2008-10-11) Li, Qian P. ; Hansell, Dennis A. ; McGillicuddy, Dennis J. ; Bates, Nicholas R. ; Johnson, Rodney J.
    Mechanisms of nutrient supply in oligotrophic ocean systems remain inadequately understood and quantified. In the North Atlantic Subtropical Gyre, for example, the observed rates of new production are apparently not balanced by nutrient supply via vertical mixing. Mesoscale eddies have been hypothesized as a mechanism for vertical nutrient pumping into the euphotic zone, but the full range and magnitude of biogeochemical impacts by eddies remain uncertain. We evaluated a cyclonic eddy located near Bermuda for its effect on water column biogeochemistry. In the density range σ θ 26.1 to 26.7, an eddy core with anomalous salinity, temperature, and biogeochemical properties was observed, suggesting that the eddy was not formed with local water (i.e., not formed of the waters surrounding the eddy at the time of observations), hence complicating efforts to quantify biogeochemical processes in the eddy. We combined conservative hydrographic tracers (density versus potential temperature and salinity) and quasi-conservative biogeochemical tracers (density versus NO, PO, and total organic carbon) to propose the origin of the eddy core water to have been several hundred kilometers to the southeast of the eddy location at sampling. By comparing the observed eddy core's biogeochemical properties with those near the proposed origin, we estimate the net changes in biogeochemical properties that occurred. A conservative estimate of export was 0.5 ± 0.34 mol N m−2 via sinking particles, with export occurring prior to our period of direct observation. Our results suggest that biogeochemical signals induced by mesoscale eddies could survive to be transported over long distances, thus providing a mechanism for lateral fluxes of nutrients and AOU (apparent oxygen utilization). Given that the proposed source area of this eddy is relatively broad, and the eddy-mixing history before our sampling is unknown, uncertainty remains in our assessment of the true biogeochemical impact of mesoscale eddies in the gyre.
  • Preprint
    Active positioning of vent larvae at a mid-ocean ridge
    ( 2013-03) Mullineaux, Lauren S. ; McGillicuddy, Dennis J. ; Mills, Susan W. ; Kosnyrev, V. K. ; Thurnherr, Andreas M. ; Ledwell, James R. ; Lavelle, J. William
    The vertical position of larvae of vent species above a mid-ocean ridge potentially has a strong effect on their dispersal. Larvae may be advected upward in the buoyant vent plume, or move as a consequence of their buoyancy or active swimming. Alternatively, they may be retained near bottom by the topography of the axial trough, or by downward swimming. At vents near 9°50’N on the axis of the East Pacific Rise, evidence for active larval positioning was detected in a comparison between field observations of larvae in the plankton in 2006 and 2007 and distributions of non-swimming larvae in a two-dimensional bio-physical model. In the field, few vent larvae were collected at the level of the neutrally buoyant plume (~75 m above bottom); their relative abundances at that height were much lower than those of simulated larvae from a near-bottom release in the model. This discrepancy was observed for many vent species, particularly gastropods, suggesting that they may actively remain near bottom by sinking or swimming downward. Near the seafloor, larval abundance decreased from the ridge axis to 1000 m off axis much more strongly in the observations than in the simulations, again pointing to behavior as a potential regulator of larval transport. We suspect that transport off axis was reduced by downward-moving behavior, which positioned larvae into locations where they were isolated from cross-ridge currents by seafloor topography, such as the walls of the axial valley – which are not resolved in the model. Cross-ridge gradients in larval abundance varied between gastropods and polychaetes, indicating that behavior may vary between taxonomic groups, and possibly between species. These results suggest that behaviorally mediated retention of vent larvae may be common, even for species that have a long planktonic larval duration and are capable of long-distance dispersal.
  • Article
    Impact of current-wind interaction on vertical processes in the Southern Ocean
    (American Geophysical Union, 2020-03-17) Song, Hajoon ; Marshall, John C. ; McGillicuddy, Dennis J. ; Seo, Hyodae
    Momentum input from westerly winds blowing over the Southern Ocean can be modulated by mesoscale surface currents and result in changes in large‐scale ocean circulation. Here, using an eddy‐resolving 1/20 degree ocean model configured near Drake Passage, we evaluate the impact of current‐wind interaction on vertical processes. We find a reduction in momentum input from the wind, reduced eddy kinetic energy, and a modification of Ekman pumping rates. Wind stress curl resulting from current‐wind interaction leads to net upward motion, while the nonlinear Ekman pumping term associated with horizontal gradients of relative vorticity induces net downward motion. The spatially averaged mixed layer depth estimated using a density criteria is shoaled slightly by current‐wind interaction. Current‐wind interaction, on the other hand, enhances the stratification in the thermocline below the mixed layer. Such changes have the potential to alter biogeochemical processes including nutrient supply, biological productivity, and air‐sea carbon dioxide exchange.
  • Article
    Dynamics of an intense Alexandrium catenella red tide in the Gulf of Maine: satellite observations and numerical modeling
    (Elsevier, 2020-10-26) Li, Yizhen ; Stumpf, Richard P. ; McGillicuddy, Dennis J. ; He, Ruoying
    In July 2009, an unusually intense bloom of the toxic dinoflagellate Alexandrium catenella occurred in the Gulf of Maine. The bloom reached high concentrations (from hundreds of thousands to one million cells L−1) that discolored the water and exceeded normal bloom concentrations by a factor of 1000. Using Medium Resolution Imaging Spectrometer (MERIS) imagery processed to target chlorophyll concentrations (>2 µg L−1), patches of intense A. catenella concentration were identified that were consistent with the highly localized cell concentrations observed from ship surveys. The bloom patches were generally aligned with the edge of coastal waters with high-absorption. Dense bloom patches moved onshore in response to a downwelling event, persisted for approximately one week, then dispersed rapidly over a few days and did not reappear. Coupled physical-biological model simulations showed that wind forcing was an important factor in transporting cells onshore. Upward swimming behavior facilitated the horizontal cell aggregation, increasing the simulated maximum depth-integrated cell concentration by up to a factor of 40. Vertical convergence of cells, due to active swimming of A. catenella from the subsurface to the top layer, could explain the additional 25-fold intensification (25 × 40=1000-fold) needed to reach the bloom concentrations that discolored the water. A model simulation that considered upward swimming overestimated cell concentrations downstream of the intense aggregation. This discrepancy between model and observed concentrations suggested a loss of cells from the water column at a time that corresponded to the start of encystment. These results indicated that the joint effect of upward swimming, horizontal convergence, and wind-driven flow contributed to the red water event, which might have promoted the sexual reproduction event that preceded the encystment process.
  • Preprint
    Mesoscale variability in intact and ghost colonies of Phaeocystis antarctica in the Ross Sea : distribution and abundance
    ( 2016-05) Smith, Walker O. ; McGillicuddy, Dennis J. ; Olson, Elise M. B. ; Kosnyrev, Valery ; Peacock, Emily E. ; Sosik, Heidi M.
    Phaeocystis, a genus with a cosmopolitan distribution and a polymorphic life cycle, was observed during summer in the Ross Sea, Antarctica, where large blooms of this haptophyte regularly occur. The mesoscale vertical and horizontal distributions of colonies of P. antarctica were assessed using a towed Video Plankton Recorder (VPR). The mean size of colonies was 1.20 mm, and mean abundances within the three VPR surveys were 4.86, 1.96, and 11.5 mL-1. In addition to the typical spherical, transparent colonies, the VPR quantified an optically dissimilar form of colony that had a distinctive translucent appearance. It also measured the abundance of collapsed colonies, similar to those observed previously from cultures and mesocosms, which we called “ghost colonies”. The translucent colonial form had a different distribution than the more common colonial form, and at times was more abundant. Relative to intact colonies, the ghost colonies occurred less frequently, with mean abundances in the three surveys being 0.01, 0.08, and 0.0004 mL-1. Ghost colonies generally were found below the euphotic zone, where they often were in greater abundance than intact colonies. However, the relationship of ghost colonies to intact P. antarctica colonies was not direct or consistent, suggesting that the formation of ghost colonies from living colonies and their appearance within the water column were not tightly coupled. Given their relative scarcity and low carbon content, it is unlikely that ghost colonies contribute substantially to vertical flux; however, it is possible that we did not sample periods of major flux events, and as a result minimized the importance of ghost colonies to vertical flux. They do, however, represent a poorly documented feature of polar haptophyte life cycles.
  • Article
    Pseudo-nitzschia bloom dynamics in the Gulf of Maine: 2012-2016
    (Elsevier, 2019-08-19) Clark, Suzanna ; Hubbard, Katherine A. ; Anderson, Donald M. ; McGillicuddy, Dennis J. ; Ralston, David K. ; Townsend, David W.
    The toxic diatom genus Pseudo-nitzschia is a growing presence in the Gulf of Maine (GOM), where regionally unprecedented levels of domoic acid (DA) in 2016 led to the first Amnesic Shellfish Poisoning closures in the region. However, factors driving GOM Pseudo-nitzschia dynamics, DA concentrations, and the 2016 event are unclear. Water samples were collected at the surface and at depth in offshore transects in summer 2012, 2014, and 2015, and fall 2016, and a weekly time series of surface water samples was collected in 2013. Temperature and salinity data were obtained from NERACOOS buoys and measurements during sample collection. Samples were processed for particulate DA (pDA), dissolved nutrients (nitrate, ammonium, silicic acid, and phosphate), and cellular abundance. Species composition was estimated via Automated Ribosomal Intergenic Spacer Analysis (ARISA), a semi-quantitative DNA finger-printing tool. Pseudo-nitzschia biogeography was consistent in the years 2012, 2014, and 2015, with greater Pseudo-nitzschia cell abundance and P. plurisecta dominance in low-salinity inshore samples, and lower Pseudo-nitzschia cell abundance and P. delicatissima and P. seriata dominance in high-salinity offshore samples. During the 2016 event, pDA concentrations were an order of magnitude higher than in previous years, and inshore-offshore contrasts in biogeography were weak, with P. australis present in every sample. Patterns in temporal and spatial variability confirm that pDA increases with the abundance and the cellular DA of Pseudo-nitzschia species, but was not correlated with any one environmental factor. The greater pDA in 2016 was caused by P. australis – the observation of which is unprecedented in the region – and may have been exacerbated by low residual silicic acid. The novel presence of P. australis may be due to local growth conditions, the introduction of a population with an anomalous water mass, or both factors. A definitive cause of the 2016 bloom remains unknown, and continued DA monitoring in the GOM is warranted.
  • Article
    Formation of intrathermocline lenses by eddy–wind interaction
    (American Meteorological Society, 2015-02) McGillicuddy, Dennis J.
    Mesoscale intrathermocline lenses are observed throughout the World Ocean and are commonly attributed to water mass anomalies advected from a distant origin. An alternative mechanism of local generation is offered herein, in which eddy–wind interaction can create lens-shaped disturbances in the thermocline. Numerical simulations illustrate how eddy–wind-driven upwelling in anticyclones can yield a convex lens reminiscent of a mode water eddy, whereas eddy–wind-driven downwelling in cyclones produces a concave lens that thins the mode water layer (a cyclonic “thinny”). Such transformations should be observable with long-term time series in the interiors of mesoscale eddies.
  • Preprint
    Temporal progression of photosynthetic-strategy in phytoplankton in the Ross Sea, Antarctica
    ( 2015-12) Ryan-Keogh, Thomas J. ; DeLizo, Liza M. ; Smith, Walker O. ; Sedwick, Peter N. ; McGillicuddy, Dennis J. ; Moore, C. Mark ; Bibby, Thomas S.
    The bioavailability of iron influences the distribution, biomass and productivity of phytoplankton in the Ross Sea, one of the most productive regions in the Southern Ocean. We mapped the spatial and temporal extent and severity of iron-limitation of the native phytoplankton assemblage using long- (>24 h) and short-term (24 h) iron- addition experiments along with physiological and molecular characterisations during a cruise to the Ross Sea in December-February 2012. Phytoplankton increased their photosynthetic efficiency in response to iron addition, suggesting proximal iron limitation throughout most of the Ross Sea during summer. Molecular and physiological data further indicate that as nitrate is removed from the surface ocean the phytoplankton community transitions to one displaying an iron-efficient photosynthetic strategy characterised by an increase in the size of photosystem II (PSII) photochemical cross section (σPSII) and a decrease in the chlorophyll-normalised PSII abundance. These results suggest that phytoplankton with the ability to reduce their photosynthetic iron requirements are selected as the growing season progresses, which may drive the well-documented progression from Phaeocystis antarctica- assemblages to diatom-dominated phytoplankton. Such a shift in the assemblage-level photosynthetic strategy potentially mediates further drawdown of nitrate following the development of iron deficient conditions in the Ross Sea.
  • Article
    Near-bottom circulation and dispersion of sediment containing Alexandrium fundyense cysts in the Gulf of Maine during 2010–2011
    (Elsevier, 2013-12-13) Aretxabaleta, Alfredo L. ; Butman, Bradford ; Signell, Richard P. ; Dalyander, P. Soupy ; Sherwood, Christopher R. ; Sheremet, Vitalii A. ; McGillicuddy, Dennis J.
    The life cycle of Alexandrium fundyense in the Gulf of Maine includes a dormant cyst stage that spends the winter predominantly in the bottom sediment. Wave-current bottom stress caused by storms and tides induces resuspension of cyst-containing sediment during winter and spring. Resuspended sediment could be transported by water flow to different locations in the Gulf and the redistribution of sediment containing A. fundyense cysts could alter the spatial and temporal manifestation of its spring bloom. The present study evaluates model near-bottom flow during storms, when sediment resuspension and redistribution are most likely to occur, between October and May when A. fundyense cells are predominantly in cyst form. Simulated water column sediment (mud) concentrations from representative locations of the Gulf are used to initialize particle tracking simulations for the period October 2010–May 2011. Particles are tracked in full three-dimensional model solutions including a sinking velocity characteristic of cyst and aggregated mud settling (0.1 mm s−1). Although most of the material was redeposited near the source areas, small percentages of total resuspended sediment from some locations in the western (~4%) and eastern (2%) Maine shelf and the Bay of Fundy (1%) traveled distances longer than 100 km before resettling. The redistribution changed seasonally and was sensitive to the prescribed sinking rate. Estimates of the amount of cysts redistributed with the sediment were small compared to the inventory of cysts in the upper few centimeters of sediment but could potentially have more relevance immediately after deposition.
  • Article
    The prediction, verification, and significance of flank jets at mid-ocean ridges
    (The Oceanography Society, 2012-03) Lavelle, J. William ; Thurnherr, Andreas M. ; Mullineaux, Lauren S. ; McGillicuddy, Dennis J. ; Ledwell, James R.
    One aspect of ocean flow over mid-ocean ridges that has escaped much attention is the capacity of a ridge to convert oscillatory flows into unidirectional flows. Those unidirectional flows take the form of relatively narrow jets hugging the ridge's flanks. In the Northern Hemisphere, the jets move heat and dissolved and particulate matter poleward on the west and equatorward on the east of north-south trending ridges. Recent measurements and a model of flow at the East Pacific Rise at 9–10°N show that these ridge-parallel flows can extend 10–15 km horizontally away from the ridge axis, reach from the seafloor to several hundreds of meters above ridge crest depth, and have maximum speeds in their cores up to 10 cm s–1. Because of their along-ridge orientation and speed, the jets can significantly affect the transport of hydrothermal vent-associated larvae between vent oases along the ridge crest and, possibly, contribute to the mesoscale stirring of the abyssal ocean. Because jet-formation mechanisms involve oscillatory currents, ocean stratification, and topography, the jets are examples of "stratified topographic flow rectification." Ridge jets have parallels in rectified flows at seamounts and submarine banks.
  • Article
    Deep ocean circulation and transport where the East Pacific Rise at 9–10°N meets the Lamont seamount chain
    (American Geophysical Union, 2010-12-31) Lavelle, J. William ; Thurnherr, Andreas M. ; Ledwell, James R. ; McGillicuddy, Dennis J. ; Mullineaux, Lauren S.
    We report the first 3-D numerical model study of abyssal ocean circulation and transport over the steep topography of the East Pacific Rise (EPR) and adjoining Lamont seamount chain in the eastern tropical Pacific. We begin by comparing results of hydrodynamical model calculations with observations of currents, hydrography, and SF6 tracer dispersion taken during Larval Dispersal on the Deep East Pacific Rise (LADDER) field expeditions in 2006–2007. Model results are then used to extend observations in time and space. Regional patterns are pronounced in their temporal variability at M2 tidal and subinertial periods. Mean velocities show ridge-trapped current jets flowing poleward west and equatorward east of the ridge, with time-varying magnitudes (weekly average maximum of ∼10 cm s−1) that make the jets important features with regard to ridge-originating particle/larval transport. Isotherms bow upward over the ridge and plunge downward into seamount flanks below ridge crest depth. The passage (P1) between the EPR and the first Lamont seamount to the west is a choke point for northward flux at ridge crest depths and below. Weekly averaged velocities show times of anticyclonic flow around the Lamont seamount chain as a whole and anticyclonic flow around individual seamounts. Results show that during the LADDER tracer experiment SF6 reached P1 from the south in the western flank jet. A short-lived change in regional flow direction, just at the time of SF6 arrival at P1, started the transport of SF6 to the west on a course south of the seamounts, as field observations suggest. Approximately 20 days later, a longer-lasting shift in regional flow from west to SSE returned a small fraction of the tracer to the EPR ridge crest.
  • Preprint
    Submesoscale hotspots of productivity and respiration : insights from high-resolution oxygen and fluorescence sections
    ( 2017-10) Stanley, Rachel H. R. ; McGillicuddy, Dennis J. ; Sandwith, Zoe O. ; Pleskow, Haley M.
    Modeling studies have shown that mesoscale and submesoscale processes can stimulate phytoplankton productivity and export production. Here, we present observations from an undulating, towed Video Plankton Recorder (VPR-II) in the tropical Atlantic. The VPR-II collected profiles of oxygen, fluorescence, temperature and salinity in the upper 140 m of the water column at a spatial resolution of 1 m in the vertical and <2 km in the horizontal. The data reveal remarkable "hotspots", i.e. locations 5 to 10 km wide which have elevated fluorescence and decreased oxygen, both of which are likely the result of intense submesoscale upwelling. Based on estimates of source water, estimated from identical temperature and salinity surfaces, hotspots are more often areas of net respiration than areas of net production — although the inferred changes in oxygen are subject to uncertainty in the determination of the source of the upwelled waters since the true source water may not have been sampled. We discuss the spatial distribution of these hotspots and present a conceptual model outlining their possible generation and decline. Simultaneous measurements of O2/Ar in the mixed layer from a shipboard mass spectrometer provide estimates of rates of surface net community production. We find that the subsurface biological hotspots are often expressed as an increase in mixed layer rates of net community production. Overall, the large number of these hotspots support the growing evidence that submesoscale processes are important drivers in upper ocean biological production.
  • Article
    Variational data assimilative modeling of the Gulf of Maine in spring and summer 2010
    (John Wiley & Sons, 2015-05-19) Li, Yizhen ; He, Ruoying ; Chen, Ke ; McGillicuddy, Dennis J.
    A data assimilative ocean circulation model is used to hindcast the Gulf of Maine [GOM) circulation in spring and summer 2010. Using the recently developed incremental strong constraint 4D Variational data assimilation algorithm, the model assimilates satellite sea surface temperature and in situ temperature and salinity profiles measured by expendable bathythermograph, Argo floats, and shipboard CTD casts. Validation against independent observations shows that the model skill is significantly improved after data assimilation. The data-assimilative model hindcast reproduces the temporal and spatial evolution of the ocean state, showing that a sea level depression southwest of the Scotian Shelf played a critical role in shaping the gulf-wide circulation. Heat budget analysis further demonstrates that both advection and surface heat flux contribute to temperature variability. The estimated time scale for coastal water to travel from the Scotian Shelf to the Jordan Basin is around 60 days, which is consistent with previous estimates based on in situ observations. Our study highlights the importance of resolving upstream and offshore forcing conditions in predicting the coastal circulation in the GOM.
  • Article
    Suppressed pCO(2) in the Southern Ocean due to the interaction between current and wind
    (American Geophysical Union, 2021-11-15) Kwak, Kyungmin ; Song, Hajoon ; Marshall, John C. ; Seo, Hyodae ; McGillicuddy, Dennis J.
    The Southern Ocean, an important region for the uptake of anthropogenic carbon dioxide (CO2), features strong surface currents due to substantial mesoscale meanders and eddies. These features interact with the wind and modify the momentum transfer from the atmosphere to the ocean. Although such interactions are known to reduce momentum transfer, their impact on air-sea carbon exchange remains unclear. Using a 1/20° physical-biogeochemical coupled ocean model, we examined the impact of the current-wind interaction on the surface carbon concentration and the air-sea carbon exchange in the Southern Ocean. The current-wind interaction decreased winter partial pressure of CO2 (pCO2) at the ocean surface mainly south of the northern subantarctic front. It also reduced pCO2 in summer, indicating enhanced uptake, but not to the same extent as the winter loss. Consequently, the net outgassing of CO2 was found to be reduced by approximately 17% when including current-wind interaction. These changes stem from the combined effect of vertical mixing and Ekman divergence. A budget analysis of dissolved inorganic carbon (DIC) revealed that a weakening of vertical mixing by current-wind interaction reduces the carbon supply from below, and particularly so in winter. The weaker wind stress additionally lowers the subsurface DIC concentration in summer, which can affect the vertical diffusive flux of carbon in winter. Our study suggests that ignoring current-wind interactions in the Southern Ocean can overestimate winter CO2 outgassing.
  • Preprint
    Habitat usage by the cryptic copepods Pseudocalanus moultoni and P. newmani on Georges Bank (Northwest Atlantic)
    ( 2015-10-04) Bucklin, Ann ; McGillicuddy, Dennis J. ; Wiebe, Peter H. ; Davis, Cabell S.
    The cryptic copepod species, Pseudocalanus moultoni and P. newmani, co-occur on Georges Bank and in the Gulf of Maine (Northwest Atlantic); even recent studies have reported results and conclusions based on examination of the combined species. Species-specific PCR (SS-PCR) based on mitochondrial cytochrome oxidase I (COI) sequence divergence was used in this study to discriminate the species. Species-specific descriptions of habitat usage and predicted patterns of transport and retention on Georges Bank were made by mapping distributions and calculating abundances of each species from January to June, 1999 for four vertical strata (0-15 m, 15-40 m, 40-100 m, and 0-100 m) and five regions (Northern Flank, Bank Crest, Northeast Peak, Southern Flank, and Slope Water) identified on the basis of bathymetry and circulation. Patterns of distribution and abundance for the two species during January to June, 1999 were largely consistent with those described based on vertically integrating mapping and analysis for the same period in 1997 by McGillicuddy and Bucklin (2002). The region-specific and depth-stratified analyses allowed further discrimination in habitat usage by the species and confirmed the distinctive patterns for the two species. The observed differences between the species in abundances among the five regions and three depth strata over Georges Bank impact their transport trajectories. The concentration of P. moultoni in deep layers likely explains the higher rates of retention and lower rates of advective loss of this species from the Bank, compared to P. newmani, which may be more subject to wind-driven transport in the surface layer. Accurate identification and discrimination of even closely-related and cryptic species is needed to ensure full understanding and realistic predictions of changes in diversity of zooplankton and the functioning of pelagic ecosystems.
  • Preprint
    Alexandrium fundyense cyst viability and germling survival in light vs. dark at a constant low temperature
    ( 2013-05) Vahtera, Emil ; Crespo, Bibiana G. ; McGillicuddy, Dennis J. ; Olli, Kalle ; Anderson, Donald M.
    Both observations and models suggest that large-scale coastal blooms of Alexandrium fundyense in the Gulf of Maine are seeded by deep-bottom cyst accumulation zones (“seed beds”) where cysts germinate from the sediment surface or the overlying near-bottom nepheloid layers at water depths exceeding 100 m. The germling cells and their vegetative progeny are assumed to be subject to modest mortality while in complete darkness as they swim to illuminated surface waters. To test the validity of this assumption we investigated in the laboratory cyst viability and the survival of the germling cells and their vegetative progeny during prolonged exposure to darkness at a temperature of 6°C, simulating the conditions in deep Gulf of Maine waters. We isolated cysts from bottom sediments collected in the Gulf of Maine under low red light and incubated them in 96-well tissue culture-plates in culture medium under a 10:14h light: dark cycle and under complete darkness. Cyst viability was high, with excystment frequency reaching 90% in the illuminated treatment after 30 days and in the dark treatment after 50 days. Average germination rates were 0.062 and 0.038 d-1 for light and dark treatments, respectively. The dark treatment showed an approximately two-week time lag in maximum germination rates when compared to the light treatment. Survival of germlings was considerably lower in the dark treatment. In light treatments, 47% of germinated cysts produced germlings that were able to survive for 7 days and produce vegetative progeny, i.e. there were live cells in the well along with an empty cyst at least once during the experiment. In the dark treatments 12% of cysts produced germlings that were able to survive. When dark treatments are scaled to take into account non-darkness related mortality, approximately 28% of cysts produced germlings that were able to survive for at least 7 days. Even though cysts are able to germinate in darkness, the lack of illumination considerably reduces survival rate of germling cells. In addition to viability of cysts in surface sediments and the near-bottom nepheloid layer, survivability of germling cells and their vegetative progeny at aphotic depths is an important consideration in assessing the quantitative role of deep-coastal cyst seed beds in bloom formation.