Ullmann Steven G.

No Thumbnail Available
Last Name
Ullmann
First Name
Steven G.
ORCID

Search Results

Now showing 1 - 10 of 10
  • Presentation
    CHANS : Florida red tides and coastal populations as a coupled nature-human system
    ( 2013-10-28) Hoagland, Porter ; Kirkpatrick, Barbara ; Kirkpatrick, Gary ; Hitchcock, Gary ; Kohler, Kate ; Lovko, Vince ; Ullmann, Steven G. ; Reich, Andrew ; Fleming, Lora E.
    Coupled nature-human (CNH) systems are now the focus of a growing number of inter-disciplinary research programs worldwide. As implied by the term “coupled,” these systems in-volve interactions between humans and nature, often affecting the dynamic characteristics of each component. Both natural and social scientists are engaged in developing a deeper un-derstanding of these dynamics, focusing on the linkages and feedbacks affecting the trajectories of coupled system behavior. Several researchers have begun to identify the generic aspects of nature-human couplings. Many of these aspects have been adapted from the field of ecology, where the dynamic characteristics of ecological systems have been studied for decades. These aspects include system heterogeneity, time lags, reciprocal feedbacks, thresholds, surprises, legacies, and resilience. The presence of such aspects has implications for the stability and persistence of particular ecosystem states, leading potentially to further implications for human heath and welfare. This talk reviews a specific type of natural hazard-human coupling that relates to coastal blooms of toxic marine algae, drawing examples primarily from human interactions with blooms of the toxic dinoflagellate Karenia brevis from the eastern Gulf of Mexico. This talk introduces a set of HAB Symposium “speed” presentations relating to different aspects of an ongoing multi-institutional and inter-disciplinary research project that examines Florida red tides as a type of CNH system. We present examples of the generic aspects of CNH systems in the context of Florida red tides, and we discuss also some of the challenges involved in compiling relevant data to support our analytical efforts.
  • Preprint
    Changes in work habits of lifeguards in relation to Florida red tide
    ( 2010-06-15) Nierenberg, Kate ; Kirner, Karen ; Hoagland, Porter ; Ullmann, Steven G. ; LeBlanc, William G. ; Kirkpatrick, Gary ; Fleming, Lora E. ; Kirkpatrick, Barbara
    The marine dinoflagellate, Karenia brevis, is responsible for Florida red tides. Brevetoxins, the neurotoxins produced by K. brevis blooms, can cause fish kills, contaminate shellfish, and lead to respiratory illness in humans. Although several studies have assessed different economic impacts from Florida red tide blooms, no studies to date have considered the impact on beach lifeguard work performance. Sarasota County experiences frequent Florida red tides and staffs lifeguards at its beaches 365 days a year. This study examined lifeguard attendance records during the time periods of March 1 to September 30 in 2004 (no bloom) and March 1 to September 30 in 2005 (bloom). The lifeguard attendance data demonstrated statistically significant absenteeism during a Florida red tide bloom. The potential economic costs resulting from red tide blooms were comprised of both lifeguard absenteeism and presenteeism. Our estimate of the costs of absenteeism due to the 2005 red tide in Sarasota County is about $3,000. On average, the capitalized costs of lifeguard absenteeism in Sarasota County may be on the order of $100,000 at Sarasota County beaches alone. When surveyed, lifeguards reported not only that they experienced adverse health effects of exposure to Florida red tide but also that their attentiveness and abilities to take preventative actions decrease when they worked during a bloom, implying presenteeism effects. The costs of presenteeism, which imply increased risks to beachgoers, arguably could exceed those of absenteeism by an order of magnitude. Due to the lack of data, however, we are unable to provide credible estimates of the costs of presenteeism or the potential increased risks to bathers.
  • Article
    Lessening the hazards of Florida red tides: a common sense approach
    (Frontiers Media, 2020-07-09) Hoagland, Porter ; Kirkpatrick, Barbara ; Jin, Di ; Kirkpatrick, Gary ; Fleming, Lora E. ; Ullmann, Steven G. ; Beet, Andrew R. ; Hitchcock, Gary ; Harrison, Kate K. ; Li, Zongchao C. ; Garrison, Bruce ; Diaz, Roberto E. ; Lovko, Vince
    In the Gulf of Mexico, especially along the southwest Florida coast, blooms of the dinoflagellate Karenia brevis are a coastal natural hazard. The organism produces a potent class of toxins, known as brevetoxins, which are released following cell lysis into ocean or estuarine waters or, upon aerosolization, into the atmosphere. When exposed to sufficient levels of brevetoxins, humans may suffer from respiratory, gastrointestinal, or neurological illnesses. The hazard has been exacerbated by the geometric growth of human populations, including both residents and tourists, along Florida’s southwest coast. Impacts to marine organisms or ecosystems also may occur, such as fish kills or deaths of protected mammals, turtles, or birds. Since the occurrence of a severe Karenia brevis bloom off the southwest Florida coast three-quarters of a century ago, there has been an ongoing debate about the best way for humans to mitigate the impacts of this hazard. Because of the importance of tourism to coastal Florida, there are incentives for businesses and governments alike to obfuscate descriptions of these blooms, leading to the social amplification of risk. We argue that policies to improve the public’s ability to understand the physical attributes of blooms, specifically risk communication policies, are to be preferred over physical, chemical, or biological controls. In particular, we argue that responses to this type of hazard must emphasize maintaining the continuity of programs of scientific research, environmental monitoring, public education, and notification. We propose a common-sense approach to risk communication, comprising a simplification of the public provision of existing sources of information to be made available on a mobile website.
  • Presentation
    CHANS : the characteristics of cost-effective policy responses for harmful algal blooms [poster]
    ( 2015-11-11) Hoagland, Porter ; Kirkpatrick, Barbara ; Kirkpatrick, Gary ; Hitchcock, Gary ; Ullmann, Steven G. ; Reich, Andrew ; Fleming, Lora E. ; Jin, Di ; Beet, Andrew R. ; Li, Cathy ; Garrison, Bruce ; Lovko, Vince ; Kohler, Kate ; Rudge, Katrin
    A growing concern for coastal management is the choice of appropriate public or private responses to HABs as a natural hazard. Considerable efforts have been devoted to understanding the scientific aspects of HABs, including their distributions in space and time, their ecological roles, and the nature of their toxic effects, among others. Much energy also has been directed at exploring socio-economic impacts and identifying potential management actions, including actions to prevent, control, or mitigate blooms. Using blooms of Florida red tide (Karenia brevis) as a case study, we develop an approach to the choice of policy responses to K. brevis blooms. Importantly, several new types of public health, environmental, and socio-economic impacts now are beginning to be revealed, including human gastrointestinal and potential neurological illnesses; morbidities and mortalities of protected species, including manatees, cetaceans, and sea turtles; increased numbers of hospital emergency room visits for the elderly; increased respiratory morbidities in workers, such as beach lifeguards; and potential reduced K- 12 school attendance. Optimal policy responses to this hazard are likely to depend critically upon why and where a bloom occurs, its spatial and temporal scales and toxicity, and the nature of its impacts. In the face of significant ongoing scientific uncertainties, and given estimates of impacts, we find that policies to expand and stabilize scientific research programs and environmental monitoring efforts, to develop and implement education programs for both residents and tourists, and to communicate the physical aspects of blooms to the public in a timely fashion are likely optimal.
  • Preprint
    Human responses to Florida red tides : policy awareness and adherence to local fertilizer ordinances
    ( 2014-06) Kirkpatrick, Barbara ; Kohler, Kate ; Byrne, Margaret ; Fleming, Lora E. ; Scheller, Karen ; Reich, Andrew ; Hitchcock, Gary ; Kirkpatrick, Gary ; Ullmann, Steven G. ; Hoagland, Porter
    To mitigate the damages of natural hazards, policy responses can be beneficial only if they are effective. Using a self-administered survey approach, this paper focuses on the adherence to local fertilizer ordinances (i.e., county or municipal rules regulating the application of fertilizer to private lawns or facilities such as golf courses) implemented in jurisdictions along the southwest Florida coast in response to hazardous blooms of Florida red tides (Karenia brevis). These ordinances play a role in the context of evolving programs of water pollution control at federal, state, water basin, and local levels. With respect to policy effectiveness, while the strength of physical linkages is of critical importance, the extent to which humans affected are aware of and adhere to the relevant rules, is equally critical. We sought to understand the public’s depth of understanding about the rationales for local fertilizer ordinances. Respondents in Sarasota, Florida, were asked about their fertilizer practices in an area that has experienced several major blooms of Florida red tides over the past two decades. A highly educated, older population of 305 residents and “snowbirds” reported relatively little knowledge about a local fertilizer ordinance, its purpose, or whether it would change the frequency, size, or duration of red tides. This finding held true even among subpopulations that were expected to have more interest in or to be more knowledgeable about harmful algal blooms. In the face of uncertain science and environmental outcomes, and with individual motivations at odds with evolving public policies, the effectiveness of local community efforts to decrease the impacts of red tides may be compromised. Targeted social-science research on human perceptions about the risks of Florida red tides and education about the rationales for potential policy responses is warranted.
  • Article
    The costs of respiratory illnesses arising from Florida Gulf Coast Karenia brevis blooms
    (National Institute of Environmental Health Sciences, 2009-05-01) Hoagland, Porter ; Jin, Di ; Polansky, Lara Y. ; Kirkpatrick, Barbara ; Kirkpatrick, Gary ; Fleming, Lora E. ; Reich, Andrew ; Watkins, Sharon M. ; Ullmann, Steven G. ; Backer, Lorraine C.
    Algal blooms of Karenia brevis, a harmful marine algae, occur almost annually off the west coast of Florida. At high concentrations, K. brevis blooms can cause harm through the release of potent toxins, known as brevetoxins, to the atmosphere. Epidemiologic studies suggest that aerosolized brevetoxins are linked to respiratory illnesses in humans. We hypothesized a relationship between K. brevis blooms and respiratory illness visits to hospital emergency departments (EDs) while controlling for environmental factors, disease, and tourism. We sought to use this relationship to estimate the costs of illness associated with aerosolized brevetoxins. We developed a statistical exposure–response model to express hypotheses about the relationship between respiratory illnesses and bloom events. We estimated the model with data on ED visits, K. brevis cell densities, and measures of pollen, pollutants, respiratory disease, and intra-annual population changes. We found that lagged K. brevis cell counts, low air temperatures, influenza outbreaks, high pollen counts, and tourist visits helped explain the number of respiratory-specific ED diagnoses. The capitalized estimated marginal costs of illness for ED respiratory illnesses associated with K. brevis blooms in Sarasota County, Florida, alone ranged from $0.5 to $4 million, depending on bloom severity. Blooms of K. brevis lead to significant economic impacts. The costs of illness of ED visits are a conservative estimate of the total economic impacts. It will become increasingly necessary to understand the scale of the economic losses associated with K. brevis blooms to make rational choices about appropriate mitigation.
  • Preprint
    The human health effects of Florida Red Tide (FRT) blooms : an expanded analysis
    ( 2014-03) Hoagland, Porter ; Jin, Di ; Beet, Andrew R. ; Kirkpatrick, Barbara ; Reich, Andrew ; Ullmann, Steven G. ; Fleming, Lora E. ; Kirkpatrick, Gary
    Human respiratory and digestive illnesses can be caused by exposures to brevetoxins from blooms of the marine alga Karenia brevis, also known as Florida red tide (FRT). K. brevis requires macro-nutrients to grow; although the sources of these nutrients have not been resolved completely, they are thought to originate both naturally and anthropogenically. The latter sources comprise atmospheric depositions, industrial effluents, land runoffs, or submerged groundwater discharges. To date, there has been only limited research on the extent of human health risks and economic impacts due to FRT. We hypothesized that FRT blooms were associated with increases in the numbers of emergency room visits and hospital inpatient admissions for both respiratory and digestive illnesses. We sought to estimate these relationships and to calculate the costs of associated adverse health impacts. We developed environmental exposure-response models to test the effects of FRT blooms on human health, using data from diverse sources. We estimated the FRT bloom-associated illness costs, using extant data and parameters from the literature. When controlling for resident population, a proxy for tourism, and seasonal and annual effects, we found that increases in respiratory and digestive illnesses can be explained by FRT blooms. Specifically, FRT blooms were associated with human health and economic effects in older cohorts (≥ 55 years of age) in six southwest Florida counties. Annual costs of illness ranged from $60,000 to $700,000 annually, but these costs could exceed $1.0 million per year for severe, long-lasting FRT blooms, such as the one that occurred during 2005. Assuming that the average annual illness costs of FRT blooms persist into the future, using a discount rate of 3%, the capitalized costs of future illnesses would range between $2-24 million.
  • Presentation
    Testing for the potential effects of Karenia brevis on school absences [poster]
    ( 2015-11-15) Moore, Tamecia ; Diaz, Roberto E. ; Ullmann, Steven G. ; Hoagland, Porter ; Beet, Andrew R. ; Jin, Di ; Kirkpatrick, Barbara ; Kirkpatrick, Gary ; Fleming, Lora E. ; Hitchcock, Gary ; Drennon, Michael ; Kumar, Naresh
    We analyzed a potential relationship between changes in school absences in Sarasota County and Karenia brevis (Kb) count data. Brevetoxins released during Kb blooms could be a reason for students experiencing increased respiratory or gastrointestinal illnesses, causing an increase in absence rates. We designed a map to relate the locations of Sarasota County schools and the distributions of those Kb counts with a minimum of 10,000 cell counts per liter and above. Due to the proximity of Kb counts, we hypothesized that brevetoxins could have a greater effect on the schools near the coast of Florida rather than the schools inland. Because individuals could be affected by brevetoxins up to several days after being exposed, we expected to find a lagged effect of a bloom occurrence on school absences. Using a regression approach, we were unable to detect an association between Kb counts and student absences. In some cases, the direction of the effects were opposite to what would be expected (i.e., an increase in Kb counts was associated with a reduction in the percent absent rate). The results indicated that over 70% of the variation in the school percent absent rate could be explained by the latent characteristics of individual schools (such as variations in student populations across different schools), by school week, by month (such as the effects of flu outbreaks or and other seasonal factors), and by year.
  • Presentation
    CHANS : modeling the dynamics of HABs, human communities, and policy choices along the Florida Gulf Coast
    ( 2015-11-19) Hoagland, Porter ; Kirkpatrick, Barbara ; Kirkpatrick, Gary ; Hitchcock, Gary ; Ullmann, Steven G. ; Reich, Andrew ; Fleming, Lora E. ; Jin, Di ; Beet, Andrew R. ; Li, Cathy ; Garrison, Bruce ; Lovko, Vince ; Kohler, Kate ; Rudge, Katrin
    Coupled human-nature systems (CHANS) involve dynamic interactions between humans and nature, often influenced by and affecting the distinct dynamic characteristics of each component. We present an overview of an ongoing interdisciplinary research program focused on a specific type of systems that couple expanding and fluctuating human coastal populations to episodic blooms of toxic marine algae, drawing examples primarily from human interactions with blooms of the toxic dinoflagellate Karenia brevis from the eastern Gulf of Mexico (“Florida red tides”). We introduce a set of HAB Symposium “speed” presentations and associated posters based on multi-disciplinary research. Using extant, but extraordinary, data to specify empirical models, this program of research has focused on characterizing the influence of anthropogenic sources on K. brevis blooms, assessing the public health and economic impacts of these blooms in an exposure-response framework, and defining the choice of appropriate human policy responses to the hazard. We present examples of the generic aspects of CHANS systems in the context of Florida red tides, and we discuss also some of the challenges involved in compiling and analyzing the relevant data to support our positive and normative analytical efforts.
  • Presentation
    The neurological effects of Florida Red Tide (FRT) blooms [poster]
    ( 2015-11-15) Diaz, Roberto E. ; Moore, Tamecia ; Ullmann, Steven G. ; Hoagland, Porter ; Beet, Andrew R. ; Jin, Di ; Kirkpatrick, Barbara ; Kirkpatrick, Gary ; Fleming, Lora E. ; Hitchcock, Gary
    Karenia brevis is a marine dinoflagellate responsible for Florida red tide (FRT) blooms off the west coast of Florida. K. brevis contains brevetoxins, a neurotoxin that is absorbed by shellfish as well as released into the air. Brevetoxins are known to cause disruptions in normal neurological functions and are associated with neurotoxic shellfish poisoning (NSP). Previous research has emphasized the effect of FRT blooms on human health, from gastrointestinal to respiratory illnesses. However, there has been little research examining the effect of FRT blooms on neurological illnesses. There is research highlighting the biochemical effects of brevetoxins on mammalian nervous systems, so these symptoms can be matched to hospital codes that describe a hospital patient’s affliction. With these hospitalization codes, it is possible to study the relationship between FRT blooms and the occurrence of neurological illnesses in affected counties. The hospital data consists of inpatient data from 1988-2010 and emergency room data from 2005-2010. We will also use data containing K. brevis cells per liter as a measure of red tide occurrences.