Defne Zafer

No Thumbnail Available
Last Name
Defne
First Name
Zafer
ORCID

Search Results

Now showing 1 - 19 of 19
  • Article
    Salt marsh erosion rates and boundary features in a shallow Bay
    (John Wiley & Sons, 2016-10-22) Leonardi, Nicoletta ; Defne, Zafer ; Ganju, Neil K. ; Fagherazzi, Sergio
    Herein, we investigate the relationship between wind waves, salt marsh erosion rates, and the planar shape of marsh boundaries by using aerial images and the numerical model Coupled-Ocean-Atmosphere-Wave-Sediment-Transport Modeling System (COAWST). Using Barnegat Bay, New Jersey, as a test site, we found that salt marsh erosion rates maintain a similar trend in time. We also found a significant relationship between salt marsh erosion rates and the shape of marsh boundaries which could be used as a geomorphic indicator of the degradation level of the marsh. Slowly eroding salt marshes are irregularly shaped with fractal dimension higher than rapidly deteriorating marshes. Moreover, for low-wave energy conditions, there is a high probability of isolated and significantly larger than average failures of marsh portions causing a long-tailed distribution of localized erosion rates. Finally, we confirm the existence of a significant relationship between salt marsh erosion rate and wind waves exposure. Results suggest that variations in time in the morphology of salt marsh boundaries could be used to infer changes in frequency and magnitude of external agents.
  • Article
    Spatial distribution of water level impacting back-barrier bays
    (European Geosciences Union, 2019-08-20) Aretxabaleta, Alfredo L. ; Ganju, Neil K. ; Defne, Zafer ; Signell, Richard P.
    Water level in semi-enclosed bays, landward of barrier islands, is mainly driven by offshore sea level fluctuations that are modulated by bay geometry and bathymetry, causing spatial variability in the ensuing response (transfer). Local wind setup can have a complementary role that depends on wind speed, fetch, and relative orientation of the wind direction and the bay. Bay area and inlet geometry and bathymetry primarily regulate the magnitude of the transfer between open ocean and bay. Tides and short-period offshore oscillations are more damped in the bays than longer-lasting offshore fluctuations, such as a storm surge and sea level rise. We compare observed and modeled water levels at stations in a mid-Atlantic bay (Barnegat Bay) with offshore water level proxies. Observed water levels in Barnegat Bay are compared and combined with model results from the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system to evaluate the spatial structure of the water level transfer. Analytical models based on the dimensional characteristics of the bay are used to combine the observed data and the numerical model results in a physically consistent approach. Model water level transfers match observed values at locations inside the bay in the storm frequency band (transfers ranging from 50 %–100 %) and tidal frequencies (10 %–55 %). The contribution of frequency-dependent local setup caused by wind acting along the bay is also considered. The wind setup effect can be comparable in magnitude to the offshore transfer forcing during intense storms. The approach provides transfer estimates for locations inside the bay where observations were not available, resulting in a complete spatial characterization. An extension of the methodology that takes advantage of the ADCIRC tidal database for the east coast of the United States allows for the expansion of the approach to other bay systems. Detailed spatial estimates of water level transfer can inform decisions on inlet management and contribute to the assessment of current and future flooding hazard in back-barrier bays and along mainland shorelines.
  • Article
    Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes
    (Nature Publishig Group, 2017-01-23) Ganju, Neil K. ; Defne, Zafer ; Kirwan, Matthew L. ; Fagherazzi, Sergio ; D’Alpaos, Andrea ; Carniello, Luca
    Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability.
  • Article
    A geospatially resolved wetland vulnerability index: synthesis of physical drivers
    (Public Library of Science, 2020-01-30) Defne, Zafer ; Aretxabaleta, Alfredo L. ; Ganju, Neil K. ; Kalra, Tarandeep S. ; Jones, Daniel K. ; Smith, Kathryn E. L.
    Assessing wetland vulnerability to chronic and episodic physical drivers is fundamental for establishing restoration priorities. We synthesized multiple data sets from E.B. Forsythe National Wildlife Refuge, New Jersey, to establish a wetland vulnerability metric that integrates a range of physical processes, anthropogenic impact and physical/biophysical features. The geospatial data are based on aerial imagery, remote sensing, regulatory information, and hydrodynamic modeling; and include elevation, tidal range, unvegetated to vegetated marsh ratio (UVVR), shoreline erosion, potential exposure to contaminants, residence time, marsh condition change, change in salinity, salinity exposure and sediment concentration. First, we delineated the wetland complex into individual marsh units based on surface contours, and then defined a wetland vulnerability index that combined contributions from all parameters. We applied principal component and cluster analyses to explore the interrelations between the data layers, and separate regions that exhibited common characteristics. Our analysis shows that the spatial variation of vulnerability in this domain cannot be explained satisfactorily by a smaller subset of the variables. The most influential factor on the vulnerability index was the combined effect of elevation, tide range, residence time, and UVVR. Tide range and residence time had the highest correlation, and similar bay-wide spatial variation. Some variables (e.g., shoreline erosion) had no significant correlation with the rest of the variables. The aggregated index based on the complete dataset allows us to assess the overall state of a given marsh unit and quickly locate the most vulnerable units in a larger marsh complex. The application of geospatially complete datasets and consideration of chronic and episodic physical drivers represents an advance over traditional point-based methods for wetland assessment.
  • Article
    Physical response of a back-barrier estuary to a post-tropical cyclone
    (John Wiley & Sons, 2017-07-27) Beudin, Alexis ; Ganju, Neil K. ; Defne, Zafer ; Aretxabaleta, Alfredo L.
    This paper presents a modeling investigation of the hydrodynamic and sediment transport response of Chincoteague Bay (VA/MD, USA) to Hurricane Sandy using the Coupled Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system. Several simulation scenarios with different combinations of remote and local forces were conducted to identify the dominant physical processes. While 80% of the water level increase in the bay was due to coastal sea level at the peak of the storm, a rich spatial and temporal variability in water surface slope was induced by local winds and waves. Local wind increased vertical mixing, horizontal exchanges, and flushing through the inlets. Remote waves (swell) enhanced southward flow through wave setup gradients between the inlets, and increased locally generated wave heights. Locally generated waves had a negligible effect on water level but reduced the residual flow up to 70% due to enhanced apparent roughness and breaking-induced forces. Locally generated waves dominated bed shear stress and sediment resuspension in the bay. Sediment transport patterns mirrored the interior coastline shape and generated deposition on inundated areas. The bay served as a source of fine sediment to the inner shelf, and the ocean-facing barrier island accumulated sand from landward-directed overwash. Despite the intensity of the storm forcing, the bathymetric changes in the bay were on the order of centimeters. This work demonstrates the spectrum of responses to storm forcing, and highlights the importance of local and remote processes on back-barrier estuarine function.
  • Article
    A wetting and drying scheme for ROMS
    (Elsevier B.V., 2013-05-24) Warner, John C. ; Defne, Zafer ; Haas, Kevin A. ; Arango, Hernan G.
    The processes of wetting and drying have many important physical and biological impacts on shallow water systems. Inundation and dewatering effects on coastal mud flats and beaches occur on various time scales ranging from storm surge, periodic rise and fall of the tide, to infragravity wave motions. To correctly simulate these physical processes with a numerical model requires the capability of the computational cells to become inundated and dewatered. In this paper, we describe a method for wetting and drying based on an approach consistent with a cell-face blocking algorithm. The method allows water to always flow into any cell, but prevents outflow from a cell when the total depth in that cell is less than a user defined critical value. We describe the method, the implementation into the three-dimensional Regional Oceanographic Modeling System (ROMS), and exhibit the new capability under three scenarios: an analytical expression for shallow water flows, a dam break test case, and a realistic application to part of a wetland area along the Georgia Coast, USA.
  • Article
    Toward a comprehensive water-quality modeling of Barnegat Bay : development of ROMS to WASP coupler
    (Coastal Education and Research Foundation, 2017-11-02) Defne, Zafer ; Spitz, Frederick J. ; DePaul, Vincent ; Wool, Tim A.
    The Regional Ocean Modeling System (ROMS) has been coupled with the Water Quality Analysis Simulation Program (WASP) to be used in a comprehensive analysis of water quality in Barnegat Bay, New Jersey. The coupler can spatially aggregate hydrodynamic information in ROMS cells into larger WASP segments. It can also be used to resample ROMS output at a finer temporal scale to meet WASP time-stepping requirements. The coupler aggregates flow components, temperature, and salinity in ROMS output for input to WASP via a hydrodynamic linkage file. The coupler was tested initially with idealized cases designed to verify the water mass balance and conservation of constituent mass using one-to-one and one-to-many connectivity options between segments. A realistic example from the Toms River embayment, a subdomain of Barnegat Bay, was used to demonstrate the functionality of the coupling. A WASP eutrophication model accounting for dissolved oxygen (DO), nitrogen, and constant phytoplankton concentrations was applied to explore the distribution and trends in DO and nitrogen in the embayment for the period of July–August 2012. Results of DO modeling indicate satisfactory agreement with measurements collected at in-bay stations and also indicate that this coupled approach, despite substantial differences in spatiotemporal discretization between the models, provides adequate predictive capabilities.
  • Article
    Role of tidal wetland stability in lateral fluxes of particulate organic matter and carbon
    (American Geophysical Union, 2019-04-23) Ganju, Neil K. ; Defne, Zafer ; Elsey-Quirk, Tracy ; Moriarty, Julia M.
    Tidal wetland fluxes of particulate organic matter and carbon (POM, POC) are important terms in global budgets but remain poorly constrained. Given the link between sediment fluxes and wetland stability, POM and POC fluxes should also be related to stability. We measured POM and POC fluxes in eight microtidal salt marsh channels, with net POM fluxes ranging between −121 ± 33 (export) and 102 ± 28 (import) g OM·m−2·year−1 and net POC fluxes ranging between −52 ± 14 and 43 ± 12 g C·m−2·year−1. A regression employing two measures of stability, the unvegetated‐vegetated marsh ratio (UVVR) and elevation, explained >95% of the variation in net fluxes. The regression indicates that marshes with lower elevation and UVVR import POM and POC while higher elevation marshes with high UVVR export POM and POC. We applied these relationships to marsh units within Barnegat Bay, New Jersey, USA, finding a net POM import of 2,355 ± 1,570 Mg OM/year (15 ± 10 g OM·m−2·year−1) and a net POC import of 1,263 ± 632 Mg C/year (8 ± 4 g C·m−2·year−1). The magnitude of this import was similar to an estimate of POM and POC export due to edge erosion (−2,535 Mg OM/year and − 1,291 Mg C/year), suggesting that this system may be neutral from a POM and POC perspective. In terms of a net budget, a disintegrating wetland should release organic material, while a stable wetland should trap material. This study quantifies that concept and demonstrates a linkage between POM/POC flux and geomorphic stability.
  • Article
    Are elevation and open-water conversion of salt marshes connected?
    (American Geophysical Union, 2020-01-29) Ganju, Neil K. ; Defne, Zafer ; Fagherazzi, Sergio
    Salt marsh assessments focus on vertical metrics such as accretion or lateral metrics such as open‐water conversion, without exploration of how the dimensions are related. We exploited a novel geospatial data set to explore how elevation is related to the unvegetated‐vegetated marsh ratio (UVVR), a lateral metric, across individual marsh “units” within four estuarine‐marsh systems. We find that elevation scales consistently with the UVVR across systems, with lower elevation units demonstrating more open‐water conversion and higher UVVRs. A normalized elevation‐UVVR relationship converges across systems near the system‐mean elevation and a UVVR of 0.1, a critical threshold identified by prior studies. This indicates that open‐water conversion becomes a dominant lateral instability process at a relatively conservative elevation threshold. We then integrate the UVVR and elevation to yield lifespan estimates, which demonstrate that higher elevation marshes are more resilient to internal deterioration, with an order‐of‐magnitude longer lifespan than predicted for lower elevation marshes.
  • Article
    Evolution of Mid-Atlantic coastal and back-barrier estuary environments in response to a hurricane : implications for barrier-estuary connectivity
    (Springer, 2015-12-29) Miselis, Jennifer L. ; Andrews, Brian D. ; Nicholson, Robert S. ; Defne, Zafer ; Ganju, Neil K. ; Navoy, Anthony
    Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.
  • Article
    Identifying salt marsh shorelines from remotely sensed elevation data and imagery
    (MDPI, 2019-07-31) Farris, Amy S. ; Defne, Zafer ; Ganju, Neil K.
    Salt marshes are valuable ecosystems that are vulnerable to lateral erosion, submergence, and internal disintegration due to sea level rise, storms, and sediment deficits. Because many salt marshes are losing area in response to these factors, it is important to monitor their lateral extent at high resolution over multiple timescales. In this study we describe two methods to calculate the location of the salt marsh shoreline. The marsh edge from elevation data (MEED) method uses remotely sensed elevation data to calculate an objective proxy for the shoreline of a salt marsh. This proxy is the abrupt change in elevation that usually characterizes the seaward edge of a salt marsh, designated the “marsh scarp.” It is detected as the maximum slope along a cross-shore transect between mean high water and mean tide level. The method was tested using lidar topobathymetric and photogrammetric elevation data from Massachusetts, USA. The other method to calculate the salt marsh shoreline is the marsh edge by image processing (MEIP) method which finds the unvegetated/vegetated line. This method applies image classification techniques to multispectral imagery and elevation datasets for edge detection. The method was tested using aerial imagery and coastal elevation data from the Plum Island Estuary in Massachusetts, USA. Both methods calculate a line that closely follows the edge of vegetation seen in imagery. The two methods were compared to each other using high resolution unmanned aircraft systems (UAS) data, and to a heads-up digitized shoreline. The root-mean-square deviation was 0.6 meters between the two methods, and less than 0.43 meters from the digitized shoreline. The MEIP method was also applied to a lower resolution dataset to investigate the effect of horizontal resolution on the results. Both methods provide an accurate, efficient, and objective way to track salt marsh shorelines with spatially intensive data over large spatial scales, which is necessary to evaluate geomorphic change and wetland vulnerability.
  • Article
    Estimating connectivity of hard clam (Mercenaria mercenaria) and eastern oyster (Crassostrea virginica) larvae in Barnegat Bay
    (MDPI, 2019-06-01) Goodwin, Jacob D. ; Munroe, Daphne M. ; Defne, Zafer ; Ganju, Neil K. ; Vasslides, James
    Many marine organisms have a well-known adult sessile stage. Unfortunately, our lack of knowledge regarding their larval transient stage hinders our understanding of their basic ecology and connectivity. Larvae can have swimming behavior that influences their transport within the marine environment. Understanding the larval stage provides insight into population connectivity that can help strategically identify areas for restoration. Current techniques for understanding the larval stage include modeling that combines particle attributes (e.g., larval behavior) with physical processes of water movement to contribute to our understanding of connectivity trends. This study builds on those methods by using a previously developed retention clock matrix (RCM) to illustrate time dependent connectivity of two species of shellfish between areas and over a range of larval durations. The RCM was previously used on physical parameters but we expand the concept by applying it to biology. A new metric, difference RCM (DRCM), is introduced to quantify changes in connectivity under different scenarios. Broad spatial trends were similar for all behavior types with a general south to north progression of particles. The DRCMs illustrate differences between neutral particles and those with behavior in northern regions where stratification was higher, indicating that larval behavior influenced transport. Based on these findings, particle behavior led to small differences (north to south movement) in transport patterns in areas with higher salinity gradients (the northern part of the system) compared to neutral particles. Overall, the dominant direction for particle movement was from south to north, which at times was enhanced by winds from the south. Clam and oyster restoration in the southern portion of Barnegat Bay could serve as a larval supply for populations in the north. These model results show that coupled hydrodynamic and particle tracking models have implications for fisheries management and restoration activities.
  • Article
    Development and application of landsat-based wetland vegetation cover and unvegetated-vegetated marsh ratio (UVVR) for the conterminous United States
    (Springer, 2022-05-02) Ganju, Neil K. ; Defne, Zafer ; Ackerman, Katherine V.
    Effective management and restoration of salt marshes and other vegetated intertidal habitats require objective and spatially integrated metrics of geomorphic status and vulnerability. The unvegetated-vegetated marsh ratio (UVVR), a recently developed metric, can be used to establish present-day vegetative cover, identify stability thresholds, and quantify vulnerability to open-water conversion over a range of spatial scales. We developed a Landsat-based approach to quantify the within-pixel vegetated fraction and UVVR for coastal wetlands of the conterminous United States, at 30-m resolution for 2014–2018. Here we present the methodology used to generate the UVVR from spectral indices, along with calibration, validation, and spatial autocorrelation assessments. We then demonstrate multiple applications of the data across varying spatial scales: first, we aggregate the UVVR across individual states and estuaries to quantify total vegetated wetland area for the nation. On the state level, Louisiana and Florida account for over 50% of the nation’s total, while on the estuarine level, the Chesapeake Bay Estuary and selected Louisiana coastal areas each account for over 6% of the nation’s total vegetated wetland area. Second, we present cases where this dataset can be used to track wetland change (e.g., expansion due to restoration and loss due to stressors). Lastly, we propose a classification methodology that delineates areas vulnerable to open-water expansion based on the 5-year mean and standard deviation of the UVVR. Calculating the UVVR for the period-of-record back to 1985, as well as regular updating, will fill a critical gap for tracking national status of salt marshes and other vegetated habitats through time and space.
  • Preprint
    Tidal stream energy site assessment via three-dimensional model and measurements
    ( 2012-08-12) Work, Paul A. ; Haas, Kevin A. ; Defne, Zafer ; Gay, Thomas
    A methodology for assessment of the potential impacts of extraction of energy associated with astronomical tides is described and applied to a site on the Beaufort River in coastal South Carolina, U.S.A. Despite its name, the site features negligible freshwater inputs; like many in the region, it is a tidal estuary that resembles a river. A three-dimensional, numerical, hydrodynamic model was applied for a period exceeding a lunar month, allowing quantification of harmonic constituents of water level and velocity, and comparison to values derived from measurements, recorded at a location within the model domain. The measurement campaign included surveys of bathymetry and velocity fields during ebb and flood portions of a tidal cycle for model validation. Potential far-field impacts of a generic tidal energy conversion device were simulated by introducing an additional drag force in the model to enhance dissipation, resulting in 10-60% dissipation of the pre-existing kinetic power within a flow cross-section. The model reveals e ffects of the dissipation on water levels and velocities in adjacent areas, which are relatively small even at the 60% dissipation level. A method is presented to estimate the optimal vertical location for the energy conversion device and the potential power sacrificed by moving to a di fferent altitude.
  • Article
    Modeling marsh dynamics using a 3-D coupled wave-flow-sediment model
    (Frontiers Media, 2021-11-02) Kalra, Tarandeep S. ; Ganju, Neil K. ; Aretxabaleta, Alfredo L. ; Carr, Joel A. ; Defne, Zafer ; Moriarty, Julia M.
    Salt marshes are dynamic biogeomorphic systems that respond to external physical factors, including tides, sediment transport, and waves, as well as internal processes such as autochthonous soil formation. Predicting the fate of marshes requires a modeling framework that accounts for these processes in a coupled fashion. In this study, we implement two new marsh dynamic processes in the 3-D COAWST (coupled-ocean-atmosphere-wave sediment transport) model. The processes added are the erosion of the marsh edge scarp caused by lateral wave thrust from surface waves and vertical accretion driven by biomass production on the marsh platform. The sediment released from the marsh during edge erosion causes a change in bathymetry, thereby modifying the wave-energy reaching the marsh edge. Marsh vertical accretion due to biomass production is considered for a single vegetation species and is determined by the hydroperiod parameters (tidal datums) and the elevation of the marsh cells. Tidal datums are stored at user-defined intervals as a hindcast (on the order of days) and used to update the vertical growth formulation. Idealized domains are utilized to verify the lateral wave thrust formulation and show the dynamics of lateral wave erosion leading to horizontal retreat of marsh edge. The simulations of Reedy and Dinner Creeks within the Barnegat Bay estuary system demonstrate the model capability to account for both lateral wave erosion and vertical accretion due to biomass production in a realistic marsh complex. The simulations show that vertical accretion is dominated by organic deposition in the marsh interior, whereas deposition of mineral estuarine sediments occurs predominantly along the channel edges. The ability of the model to capture the fate of the sediment can be extended to model to simulate the impacts of future storms and relative sea-level rise (RSLR) scenarios on salt-marsh ecomorphodynamics.
  • Article
    Quantifying slopes as a driver of forest to marsh conversion using geospatial techniques: application to Chesapeake Bay coastal-plain, United States
    (Frontiers Media, 2021-03-17) Molino, Grace D. ; Defne, Zafer ; Aretxabaleta, Alfredo L. ; Ganju, Neil K. ; Carr, Joel A.
    Coastal salt marshes, which provide valuable ecosystem services such as flood mitigation and carbon sequestration, are threatened by rising sea level. In response, these ecosystems migrate landward, converting available upland into salt marsh. In the coastal-plain surrounding Chesapeake Bay, United States, conversion of coastal forest to salt marsh is well-documented and may offset salt marsh loss due to sea level rise, sediment deficits, and wave erosion. Land slope at the marsh-forest boundary is an important factor determining migration likelihood, however, the standard method of using field measurements to assess slope across the marsh-forest boundary is impractical on the scale of an estuary. Therefore, we developed a general slope quantification method that uses high resolution elevation data and a repurposed shoreline analysis tool to determine slope along the marsh-forest boundary for the entire Chesapeake Bay coastal-plain and find that less than 3% of transects have a slope value less than 1%; these low slope environments offer more favorable conditions for forest to marsh conversion. Then, we combine the bay-wide slope and elevation data with inundation modeling from Hurricane Isabel to determine likelihood of coastal forest conversion to salt marsh. This method can be applied to local and estuary-scale research to support management decisions regarding which upland forested areas are more critical to preserve as available space for marsh migration.
  • Article
    Estimating time-dependent connectivity in marine systems
    (John Wiley & Sons, 2016-02-04) Defne, Zafer ; Ganju, Neil K. ; Aretxabaleta, Alfredo L.
    Hydrodynamic connectivity describes the sources and destinations of water parcels within a domain over a given time. When combined with biological models, it can be a powerful concept to explain the patterns of constituent dispersal within marine ecosystems. However, providing connectivity metrics for a given domain is a three-dimensional problem: two dimensions in space to define the sources and destinations and a time dimension to evaluate connectivity at varying temporal scales. If the time scale of interest is not predefined, then a general approach is required to describe connectivity over different time scales. For this purpose, we have introduced the concept of a “retention clock” that highlights the change in connectivity through time. Using the example of connectivity between protected areas within Barnegat Bay, New Jersey, we show that a retention clock matrix is an informative tool for multitemporal analysis of connectivity.
  • Article
    Quantifying the residence time and flushing characteristics of a shallow, back-barrier estuary : application of hydrodynamic and particle tracking models
    (Springer, 2014-09-23) Defne, Zafer ; Ganju, Neil K.
    Estuarine residence time is a major driver of eutrophication and water quality. Barnegat Bay-Little Egg Harbor (BB-LEH), New Jersey, is a lagoonal back-barrier estuary that is subject to anthropogenic pressures including nutrient loading, eutrophication, and subsequent declines in water quality. A combination of hydrodynamic and particle tracking modeling was used to identify the mechanisms controlling flushing, residence time, and spatial variability of particle retention. The models demonstrated a pronounced northward subtidal flow from Little Egg Inlet in the south to Pt. Pleasant Canal in the north due to frictional effects in the inlets, leading to better flushing of the southern half of the estuary and particle retention in the northern estuary. Mean residence time for BB-LEH was 13 days but spatial variability was between ∼0 and 30 days depending on the initial particle location. Mean residence time with tidal forcing alone was 24 days (spatial variability between ∼0 and 50 days); the tides were relatively inefficient in flushing the northern end of the Bay. Scenarios with successive exclusion of physical processes from the models revealed that meteorological and remote offshore forcing were stronger drivers of exchange than riverine inflow. Investigations of water quality and eutrophication should take into account spatial variability in hydrodynamics and residence time in order to better quantify the roles of nutrient loading, production, and flushing.
  • Article
    Horizontal integrity a prerequisite for vertical stability: comparison of elevation change and the unvegetated-vegetated marsh ratio across southeastern USA Coastal Wetlands
    (Springer, 2023-06-05) Ganju, Neil K. ; Defne, Zafer ; Schwab, Caroline ; Moorman, Michelle
    Surface elevation tables (SETs) estimate the vertical resilience of coastal wetlands to sea-level rise (SLR) and other stressors but are limited in their spatial coverage. Conversely, spatially integrative metrics based on remote sensing provide comprehensive spatial coverage of horizontal processes but cannot track elevation trajectory at high resolution. Here, we present a critical advance in reconciling vertical and horizontal dynamics by assessing the relationship between elevation change, relative tidal elevation (Z*), and the unvegetated-vegetated marsh ratio (UVVR) across coastal wetland complexes in the southeastern USA. We first used the UVVR to determine the representativeness of the SET site relative to varying spatial footprints across the complex and found that SET sites generally represent the tidal wetland areas in terms of vegetated cover. There is also overall coherence between positive vertical change and high vegetative cover, but we also identified sites with high vegetative cover and negative vertical change (relative to SLR). The only sites exceeding the pace of SLR have UVVR values below the previously established 0.15 threshold. Some sites are not keeping up with SLR despite having intact marsh plains; this may indicate a risk of submergence with undetectable marsh plain loss, or an imminent transition to future open-water conversion. Aggregation of Z* across the same footprint as the UVVR demonstrates consistent coherence between elevation and vegetative cover, with lower elevation sites having larger UVVR. These results indicate that the UVVR is a suitable initial screening tool: areas above the 0.15 threshold are both horizontally and vertically vulnerable. Furthermore, this comparison suggests that horizontal integrity is a prerequisite for vertical stability: a marsh can only maintain elevation if the plain is intact with minimal unvegetated area.