Mantle Heterogeneity and Melting Processes in the South China Sea: Thermal and Melting Models Constrained by Oceanic Crustal Thickness and Basalt Geochemistry

Xubo Zhang1,2,3,4,5, Jian Lin1,2,3,5,6, and Mark D. Behn5,7

1Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China, 2Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou, China, 3China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad, Pakistan, 4State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai, China, 5Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 6Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China, 7Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, USA

Supporting Information: Supporting Information S1
Correspondence to: J. Lin, jlin@whoi.edu

Abstract We simulate mantle flow, thermal structure, and melting processes beneath the ridge axis of the South China Sea (SCS), combining the nominally anhydrous melting and fractional crystallization model, to study mantle heterogeneity and basin evolution. The model results are constrained by seismically determined crustal thickness and major element composition of fossil ridge axis basalts. The effects of half-spreading rate, mantle potential temperature, mantle source composition, and the pattern of melt migration on the crustal thickness and magma chemical composition are systematically investigated. For the SCS, the east and southwest (SW) subbasins have comparable crustal thickness, but the east subbasin has higher FeO and Na2O contents compared to the SW subbasin. The estimated best fitting mantle potential temperatures in the east and SW subbasins are 1,360 ± 15 °C and 1,350 ± 25 °C, respectively. The mantle in the east subbasin (site U1431) prior to the cessation of seafloor spreading is composed primarily of the depleted mid-ocean ridge basalt mantle (DMM), and is slightly contaminated by eclogite/pyroxenite-rich component. However, the mantle source composition of the SW subbasin (sites U1433 and U1434) contains a small percentage (2–5%) of lower continental crust. Basalt samples at the northern margin of the east subbasin (site U1500) shows similar chemical characteristics with that of the SW subbasin. We suggest that the basin-scale variability in the mantle heterogeneity of the SCS can be explained by a single model in which the contamination by the lower continental crust is gradually diluted by melting of DMM as the ridge moves away from the rifted margin.

1. Introduction

The South China Sea (SCS) is one of the largest marginal seas in the western Pacific and is located at the junction of the Eurasian, Philippine Sea, and Indo-Australian plates (Figure 1). The SCS can be divided into the northwest subbasin, east subbasin, and SW subbasin. Despite its relatively short evolution history, the SCS has undergone a series of tectonic and magmatic processes, including continental rifting and breakup, seafloor spreading, and subduction, together with extensive magmatism (e.g., Briais et al., 1993; Ding et al., 2018; Li et al., 2015; Pautot et al., 1990; Sibuet et al., 2016; Taylor & Hayes, 1980, 1983; Tu et al., 1992; Yan et al., 2014; Zhao et al., 2019). The tectonic and mantle evolution in the SCS is also strongly affected by surrounding subduction zones (e.g., Lin et al., 2019; Sun et al., 2019; Wang et al., 2019). Contrary to the classical magma-poor margin, the SCS experiences fast lithospheric extension, rapid magmatism, and fast transition from continental breakup to seafloor spreading without direct evidence of mantle exhumation (Larsen et al., 2018).

Seafloor spreading in the SCS occurred during the Oligocene to mid-Miocene (Briais et al., 1993; Li et al., 2014; Taylor & Hayes, 1980, 1983). Based on analyses of magnetic anomaly data, Taylor and Hayes (1980, 1983) and Briais et al. (1993) suggested that the age of the SCS is from ~30 to 16 Ma according to the latest geomagnetic polarity timescale (Cande & Kent, 1995; Ogg, 2012). A southward ridge jump occurred after the magnetic anomaly C7, accompanied by seafloor spreading that propagated toward the southwest.
Through analyzing high-resolution deep-tow magnetic data and the results of the International Ocean Discovery Program (IODP) Expedition 349, Li et al. (2014) proposed that the opening age of the SCS is \( \sim 33 \text{ Ma} \), and the cessation ages of the east and SW subbasin are \( \sim 15 \) and \( 16 \text{ Ma} \), respectively. Postspreading volcanism is widely distributed in the SCS, including a seamount chain along the fossil spreading axis (Wang et al., 1985; Tu et al., 1992; Yan et al., 2008a, 2008b, 2014, 2015).

Extensive seismic surveys, including multichannel seismic (MCS) and ocean bottom seismometer (OBS), have been carried out over the continental margins and oceanic subbasins, with several seismic profiles crossing the fossil spreading ridges (e.g., Pichot et al., 2014; Qiu et al., 2011; Ruan et al., 2016; Yu et al., 2017; Yu et al., 2018a; Zhang et al., 2016; Zhao et al., 2018). Postspreading volcanism has modified the crustal thickness near the fossil spreading ridges (Zhang et al., 2016; Zhao et al., 2018).
80-km-wide zone with relative thin crust (<5 km) was formed along the fossil spreading ridge, which might be attributed to a decrease in spreading rate prior to the cessation of seafloor spreading (Zhao et al., 2018). Due to overall southwestward ridge propagation in the SW subbasin, tectonic features of different spreading stages are observed, ranging from mature spreading at the northwest segment to initial spreading at the southwest segment (Li et al., 2012). The combined analyses of gravity and seismic data reveal systematically thicker crust on the northern flank of fossil spreading ridge in the SCS subbasins than the southern conjugate, which is interpreted to reflect higher mantle temperature and/or more enriched mantle source beneath the northern flank (Zhang et al., 2018a).

Recent geophysical and geochemical studies have revealed mantle anomalies underneath the Hainan Island region, leading to the hypothesis of a Hainan mantle plume (Fan & Menzies, 1992; Huang, 2014; Wei & Chen, 2016; Xu et al., 2012; Yan et al., 2008b, 2015, 2008a; Yan & Shi, 2007; Yu et al., 2018a; Zhang et al., 2018b). Seismic modeling shows that the mantle transition zone beneath the Hainan Island and Leizhou Peninsula is thinner than the global average (Wei & Chen, 2016). It is proposed that the Hainan plume may have triggered the opening of the SCS (Yan et al., 2014; Yan & Shi, 2007). The Hainan plume might have impinged on the lithosphere of the SCS continental margin in the mid-Oligocene and promoted the ridge jump and propagation in the SCS (Yu et al., 2018b). Sr-Nd-Pb-Hf isotopic ratios reveal complex mantle source compositions beneath the SCS subbasins, including the contamination by a small amount of lower continental crust (LCC) in the SW subbasin (Zhang et al., 2018b).

In this study, we construct two-dimensional (2-D) models to simulate mantle flow, thermal structure, and melting processes of the SCS and to reveal mantle heterogeneity. The simulated mantle flow and thermal structure are combined with the mantle melting model of Behn and Grove (2015) and fractional crystallization model of Yang et al. (1996) to calculate the predicted crustal thickness and lava composition at the SCS spreading axis. The dependence of the predicted crustal thickness and lava composition on half-spreading rate $U$, mantle potential temperature $T_p$, mantle source composition, and melt pooling width $W_{pool}$ is investigated. We then discuss the implications of the observed mantle heterogeneity on mantle evolution and melting processes in the SCS.

2. Data Constraints

2.1. Major and Trace Element Contents of Basalts

Several IDP Expeditions (IODP 349, 367, 368, and 368X) had been conducted in the SCS in recent years (Figure 1). The igneous oceanic crust near fossil spreading ridges was first sampled by IODP Expedition 349 at site U1431 in the east subbasin and sites U1433 and U1434 in the SW subbasin (Expedition 349 Scientists, 2014). At the northern margin of the east subbasin, mid-ocean ridge basalt (MORB) samples were recovered at sites U1500 and U1502 by IODP Expeditions 367/368 (Jian et al., 2018; Sun et al., 2018), and at site U1503 by IODP Expedition 368X (Childress et al., 2019). These drilling expeditions form a transect crossing the continent-ocean boundary (COB) (Figure 1).

Basalt samples of site U1431 have comparable major element contents with global MORBs except for relatively lower CaO content (Figure S1). Most basalt samples of site U1431 have higher MgO content compared to sites U1433 and U1434 in the SW subbasin. For a given MgO content, basalt samples of site U1431 have relatively higher FeO and Na2O contents, and lower CaO content (Figure S1). Rare Earth elements (REEs) show that most samples of site U1431 are similar to normal mid-ocean ridge basalt (N-MORB) and a few are similar to enriched mid-ocean ridge basalt (E-MORB); meanwhile basalt samples of sites U1433 and U1434 are similar to E-MORB (Figures S2a and S2b).

The basalt samples of sites U1500, U1502, and U1503 around the northern COB in the east subbasin are crucial to understand the mantle evolution from continental breakup to initial seafloor spreading. Site U1502 was flooded by remnants of continental lithosphere, which recorded the magmatism during the final stage of continental rifting and breakup (Larsen et al., 2018). Sites U1500 and U1503 sampled the oceanic crust formed during the incipient seafloor spreading (Childress et al., 2019; Yu & Liu, 2020). The bulk-rock major and trace element contents of site U1500 are selected from Yu and Liu (2020). Major element contents of site U1500 are consistent with that of sites U1433 and U1434 in the SW subbasin (Figure S1). The REE pattern
of site U1500 is similar to E-MORB (Figure S2c). The postcruise geochemistry data of U1500 and U1503 have not yet been released (Childress et al., 2019). In this study, the numerical model results are mainly constrained by MORBs of sites U1431, U1433, and U1434 near fossil spreading ridges.

2.2. Seismically Determined Crustal Thickness

In the east subbasin, four seismic profiles (P1, P2, P3, and P4) are selected to estimate crustal thickness near the fossil spreading ridge (Figure 1). The segments cutting across seamounts or the continental crust are excluded (Figure S3). Profiles P1, P2, and P3 are parallel to the Zhenbei-Huangyan seamounts chain, while profile P4 is perpendicular to the seamounts chain. Profile P1 is located north of the fossil spreading ridge in the east subbasin. The crustal thickness along profile P1 is not influenced by postspreading magmatism, and varies from 4.8 to 6.3 km (Figure S3a; Zhao et al., 2018). The part of profile P2 between two seamounts has crustal thickness of 5–6 km (Figure S3b; Zhao et al., 2018). Profile P3 is located south of profile P1, and has crustal thickness of 3.5–6 km except for its western extremity across the Zhenbei seamount (Figure S3c; Zhao et al., 2018). The thinner crust (<5 km) is observed along the western portion of profile P3. Profile P4 has a crustal thickness of 3.7–6.4 km excluding the southern segment crossing the Jixiang seamount (Figure S3d; Zhao et al., 2018). The thinner crust (<5 km) is limited to the southern segment of profile P4. A narrow zone with thinner crust (<5 km) is located along the fossil spreading ridge in the east subbasin; the outside of which has normal crustal thickness of 5–6 km except at seamounts (Zhao et al., 2018). Site U1431 is located near the northern edge of this thinner crustal zone (Zhao et al., 2018) and is close to profile P1.

In the SW sub-basin, five seismic profiles (T1, OBS2011, OBS973-1, CFCST-MCS2013, and NH973-1) are selected to estimate crustal thickness (Figure 1). Profile T1 is perpendicular to the fossil spreading ridge in the SW subbasin, and is located close to IODP sites U1433 and U1434. The crustal thickness along Profile T1 is 6–7 km and is likely thickened by postspreading magmatism, except for a narrow region of thin crust (<5 km) associated with detachment faulting north of the fossil spreading ridge (Figure S3e; Zhang et al., 2016). Profiles OBS2011 and OBS973-1 crossing the fossil spreading ridge are located away from regions modified by postspreading magmatism. The crustal thickness along OBS2011 varies from 5.1 to 5.8 km (Figure S3f; Pichot et al., 2014). Profile OBS973-1 has crustal thickness of 4–6.3 km, except for the thinner crust (<4 km) at the central axial valley (Figure S3h; Qiu et al., 2011). The average crustal thickness along profile OBS973-1 is 5.3 km (Yu et al., 2017), which is consistent with the result of Qiu et al. (2011). However, the crustal thickness inferred from MCS profiles CFCST-MCS2013 and NH973-1 is only 1.5–3.6 km (Figures S3g and S3i; Yu et al., 2018a), which is much thinner than that derived from profiles OBS2011 (Pichot et al., 2014) and OBS973-1 (Qiu et al., 2011). The Moho discontinuity identified along the MCS profiles, defined as a wave impedance boundary between the oceanic crust and uppermost mantle, is not very clear or continuous (Yu et al., 2018a). Thus, we use the velocity model derived from OBS profiles to constrain the crustal thickness in the SW subbasin. The crustal thickness beneath sites U1433 and U1434 is mainly constrained by profiles OBS973-1, which is not modified by postspreading volcanism.

2.3. Half-Spreading Rates

The half-spreading rate model in the SCS is constrained by the relatively high-resolution deep-tow magnetic anomalies and the results of IODP Expedition 349. The east subbasin has a half-spreading rate of 1–4 cm/yr, while the SW subbasin has a half-spreading rate of 2 cm/yr (Li et al., 2014). Since basalt samples (sites U1431, U1433, and U1434) used in the study are close to spreading ridges (Figure 1), we focus on the half-spreading rate variations during the period of a few million years before seafloor spreading stopping. The half-spreading rates are 1.8–2.3 and 2 cm/yr in the east and southwest subbasins prior to the cessation of seafloor spreading, respectively (Table S1).
3. Numerical Models

To estimate mantle potential temperature and mantle source composition beneath the SCS subbasins, a 2-D model is combined with a mantle melting model to simulate mantle upwelling and decompression melting processes. First, the COMSOL Multiphysics 5.0 is used to calculate mantle flow and temperature. Then the melt fraction and melt composition at each melting step are determined by the melting model of Behn and Grove (2005). The resultant melt is assumed to rise vertically through the mantle column until it encounters a permeability barrier (e.g., top of the melting region, base of the lithosphere, clinopyroxene-out reaction zone), and then migrates laterally along this boundary to the ridge axis (Ghods & Arkani-Hamed, 2000; Kelemen & Aharanov, 1998; Magde et al., 1997; Magde & Sparks, 1997; Sparks et al., 1993; Sparks & Parentier, 1991). Prior to eruption, the aggregate melt beneath the ridge axis undergoes fractional crystallization due to the cooling effect of the shallow mantle lithosphere, which is modeled using the approach of Yang et al. (1996).

3.1. Mantle Flow and Temperature

The 2-D models of mantle flow and thermal structure beneath a spreading ridge are calculated using the finite-element software package COMSOL Multiphysics 5.0, assuming a visco-plastic rheology (Figures 2 and 3). COMSOL Multiphysics has been successfully used for simulation of mantle flow and temperature in geologic systems (Behn et al., 2007, 2015; Georgen et al., 2014, 2011; Gregg et al., 2009; Montési et al., 2011; van Keken et al., 2008). Mantle flow is driven by the divergence of two surface plates moving apart at a half-spreading rate \( U \) of 0.5–10 cm/yr (Figure 2a). The vertical sides and bottom boundary of the model domain are set as open boundaries with normal stress set to be the lithostatic pressure. The top and bottom temperature boundaries are set as Dirichlet boundary conditions (i.e., fixed temperature boundaries). The surface temperature is set to \( T_s = 0 \) °C. The mantle potential temperature \( T_p \) is assumed to vary between 1,300 and 1,450 °C. The bottom temperature \( T_m \) of the model domain is determined by extrapolating the mantle potential temperature along an adiabat with gradient of 1.5 °C/kbar to the base of the model (i.e., 100 km). The vertical sides of the model domain are set as insulated walls. Model parameters are given in Table 1.

The conservation of mass, momentum, and energy are given, respectively, by

\[
\nabla \cdot \mathbf{u} = 0 \tag{1}
\]

\[
-\nabla \cdot \left[ \eta_{\text{eff}} \left( \nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \right] + \nabla p = \rho \mathbf{g} \tag{2}
\]

\[
\rho C_p \mathbf{u} \cdot \nabla T - k \nabla^2 T = 0 \tag{3}
\]

where \( \mathbf{u} \) is velocity, \( p \) is total pressure, \( \eta_{\text{eff}} \) is effective mantle viscosity, \( \rho \) is mantle density, \( \mathbf{g} \) is gravitational acceleration, \( C_p \) is specific heat capacity, \( T \) is temperature, and \( k \) is thermal conductivity. Bold denotes a vector quantity.

A visco-plastic mantle rheology is assumed, which incorporates brittle weakening within the lithosphere (Behn et al., 2007; Chen & Morgan, 1990). Compared to the model of a constant or temperature-dependent viscosity, the visco-plastic viscosity model promotes enhanced upwelling directly beneath the ridge axis, thus resulting in a warmer thermal structure and more melting (Figure S4; Behn et al., 2007, 2015; Gregg et al., 2009; Montési et al., 2011; Roland et al., 2010). The effective mantle viscosity is defined by (Behn et al., 2007; Gregg et al., 2009)

\[
\eta_{\text{eff}} = \left( \frac{1}{\eta_{\text{ld}}} + \frac{1}{\eta_{\text{hp}}} + \frac{1}{\eta_{\text{max}}} \right)^{-1} \tag{4}
\]
where $\eta_{td}$ is temperature-dependent viscosity, $\eta_{byr}$ is a brittle strength approximation based on Byerlee's law, and $\eta_{\text{max}}$ is an assumed maximum viscosity ($10^{23}$ Pa·s).

The temperature-dependent viscosity is calculated by (Gregg et al., 2009)

$$
\eta_{td} = \eta_0 \exp \left( \frac{Q}{R} \left( \frac{1}{T} - \frac{1}{T_m} \right) \right)
$$

where $\eta_0$ is reference viscosity ($10^{19}$ Pa·s), $Q$ is activation energy, $R$ is universal gas constant, and $T_m$ is the mantle temperature at the model base.

The viscosity associated with brittle failure is approximated by (Behn et al., 2007; Chen & Morgan, 1990; van Keken et al., 2008)

$$
\eta_{byr} = \frac{\tau_{\text{max}}}{2\dot{\varepsilon}_i}
$$

where $\tau_{\text{max}}$ is maximum shear stress that the lithosphere can sustain,

$$
\tau_{\text{max}} = C_0 + \mu \rho g z
$$

and $\dot{\varepsilon}_i$ is second invariant of the strain rate tensor:

$$
\dot{\varepsilon}_i = \left[ \frac{1}{2} \sum_{j} \dot{\varepsilon}_{ij} \dot{\varepsilon}_{ij} \right]^{1/2}
$$
Here $C_0$ is cohesion ($10^7$ Pa), $\mu$ is friction coefficient (0.6), $g$ is gravitational acceleration, $z$ is depth, and $\dot{\varepsilon}_{ij}$ is the component of the strain rate tensor,

$$
\dot{\varepsilon}_{ij} = \frac{1}{2} \left[ \frac{\partial \dot{u}_i}{\partial x_j} + \frac{\partial \dot{u}_j}{\partial x_i} \right]
$$

(9)

where $u_i$ and $u_j$ are components of the velocity vector $\mathbf{u}$.

### 3.2. Melt Generation, Migration, and Extraction

The melting process beneath the spreading ridges is assumed to be adiabatic and is dependent on temperature, pressure, and mantle composition (Asimow & Langmuir, 2003; Grove et al., 1992; Klein & Langmuir, 1987; Langmuir et al., 1992). The variations in lava composition and crustal thickness along global mid-ocean ridge segments can be explained by models with polybaric, anhydrous melting of peridotite (e.g., Asimow et al., 2001; Behn & Grove, 2015). The water in the mantle source also plays an important role in mantle melting. The addition of water to the source can lower the mantle solidus and cause melting to begin.
at a greater depth compared to anhydrous melting (Asimow et al., 2004; Asimow & Langmuir, 2003; Katz et al., 2003).

We utilize the mantle melting model of Behn and Grove (2015) (hereafter referred to as BG15) to calculate melt fraction and composition. The BG15 model is a nominally anhydrous melting model in the plagioclase-spinel fields, in which melting is parameterized as a function of temperature, pressure, and mantle composition. The BG15 model does not explicitly consider variations in mantle solidus associated with changes in composition. Combined with fractional crystallization model of Yang et al. (1996), the above model has successfully reproduced the crustal thickness and MORBs geochemistry of global mid-ocean ridge systems (Behn & Grove, 2015). The melting calculation is done as a postprocessing step and thus did not influence the mantle flow and temperature simulation.

We assume polybaric incremental batch melting and a constant melt productivity of 1% kbar\(^{-1}\) in the model (Behn & Grove, 2015; Gregg et al., 2009). As the mantle moves upward, 90% of the generated melt at each melting step is removed and accumulated at the ridge axis, while the remaining melt and depleted mantle residue continue to ascend and undergo further melting (Ahern & Turcotte, 1979; Behn & Grove, 2015; Gregg et al., 2009). The calculation of the composition of the lava that aggregated beneath the ridge axis consists of the following three steps (Behn & Grove, 2015; Gregg et al., 2009): (1) The composition of the melt at every model grid is calculated using the BG15 melting model. (2) The resultant melt is assumed to move upward through the mantle column until it reaches the top of the melting zone, and then migrates laterally and pools beneath the ridge axis. (3) Prior to extraction, the melt pooled at the ridge axis undergoes fractional crystallization due to mantle cooling. The mantle lithology is assumed as spinel lherzolite (Behn & Grove, 2015; Gregg et al., 2009; Workman & Hart, 2005). Models with different input mantle source compositions are used to predict the influence of source variability on lava composition (Figure 4). The major element compositions of end-member sources used in the study are given in Table 2.

### 3.2.1. Melt Generation

The BG15 model (Behn & Grove, 2015) is developed from the fractional melting model of Kinzler and Grove (1992a, 1992b, 1993, 1997), but incorporates new experimental data (Till et al., 2012). Using the BG15 model, we track the major element compositions of the residual mantle and resultant melt (Si\(_2\)O\(_5\), TiO\(_2\), Al\(_2\)O\(_3\), Cr\(_2\)O\(_3\), FeO, MgO, CaO, K\(_2\)O, and Na\(_2\)O) at each melting step. We also track changes in mantle solidus and

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_m)</td>
<td>Mantle density (kg m(^{-3}))</td>
<td>3,300</td>
</tr>
<tr>
<td>(\eta_0)</td>
<td>Reference viscosity (Pa s)</td>
<td>(10^{19})</td>
</tr>
<tr>
<td>(\eta_{\text{max}})</td>
<td>Maximum viscosity (Pa s)</td>
<td>(10^{23})</td>
</tr>
<tr>
<td>(C_p)</td>
<td>Specific heat capacity (J Kg(^{-1}) K(^{-1}))</td>
<td>1,250</td>
</tr>
<tr>
<td>(k)</td>
<td>Thermal conductivity (W m(^{-1}) K(^{-1}))</td>
<td>3</td>
</tr>
<tr>
<td>(Q)</td>
<td>Activation energy (J mol(^{-1}))</td>
<td>(2.5 \times 10^4)</td>
</tr>
<tr>
<td>(R)</td>
<td>Universal gas constant (J mol(^{-1}) K(^{-1}))</td>
<td>8.314</td>
</tr>
<tr>
<td>(T_s)</td>
<td>Temperature at the surface of the model domain (°C)</td>
<td>0</td>
</tr>
<tr>
<td>(T_p)</td>
<td>Mantle potential temperature (°C)</td>
<td>1,300–1,450</td>
</tr>
<tr>
<td>(U)</td>
<td>Half-spreading rate (cm yr(^{-1}))</td>
<td>0.5–10</td>
</tr>
<tr>
<td>(g)</td>
<td>Gravitational acceleration (m s(^{-2}))</td>
<td>9.8</td>
</tr>
<tr>
<td>(C_\partial)</td>
<td>Cohesion (Pa)</td>
<td>(10^7)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Friction coefficient</td>
<td>0.6</td>
</tr>
<tr>
<td>(L)</td>
<td>Latent heat of melting (J Kg(^{-1}))</td>
<td>(4 \times 10^5)</td>
</tr>
</tbody>
</table>
melt fraction during the decompression melting process. In the BG15 model, the input mantle is described by a four-phase assemblage, (i.e., augite, orthopyroxene, olivine, and an aluminous phase, which is spinel or plagioclase depending on the pressure).

Figure 4. Predicted crustal thickness, FeO, and Na2O contents in the aggregate melt as a function of half-spreading rate, mantle potential temperature, mantle source composition, and melt pooling width. In panels a–c, a complete melt pooling width is assumed, while in panels d–f, the mantle source is set as the depleted MORB mantle. Complete pooling means that all the melt generated in the melt zone is transported and aggregated beneath the ridge axis. The red square represents the crustal thickness derived from OBS seismic profiles in the east subbasin (P1; Zhao et al., 2018) and the blue square represents the crustal thickness of the southwest subbasin (OBS973-1; Qiu et al., 2011). The green square represents the crustal thickness derived from multichannel seismic profile (Yu et al., 2018a). The small gray dots represent available seismically determined crustal thicknesses of global mid-ocean ridge segments (Chen, 1992; Dick et al., 2003; Harding et al., 2017; Jokat et al., 2003; White et al., 2001). ESB: east subbasin, SWSB: southwest subbasin, DMM: depleted MORB mantle (Workman & Hart, 2005), PM: primitive mantle (Hart & Zindler, 1986), DMM—2% melt: DMM depleted by 2% melt extraction (Behn & Grove, 2015).

Table 2

<table>
<thead>
<tr>
<th>End member</th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Cr2O3</th>
<th>FeO</th>
<th>MgO</th>
<th>CaO</th>
<th>K2O</th>
<th>Na2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>46.16</td>
<td>0.18</td>
<td>4.08</td>
<td>0.47</td>
<td>7.57</td>
<td>37.95</td>
<td>3.22</td>
<td>0.03</td>
<td>0.33</td>
</tr>
<tr>
<td>DMM</td>
<td>44.82</td>
<td>0.13</td>
<td>3.99</td>
<td>0.57</td>
<td>8.20</td>
<td>38.82</td>
<td>3.18</td>
<td>0.01</td>
<td>0.28</td>
</tr>
<tr>
<td>Depleted DMM</td>
<td>44.63</td>
<td>0.11</td>
<td>3.52</td>
<td>0.58</td>
<td>8.27</td>
<td>39.76</td>
<td>2.98</td>
<td>0.0003</td>
<td>0.15</td>
</tr>
<tr>
<td>LCC</td>
<td>58.20</td>
<td>0.91</td>
<td>17.56</td>
<td>0</td>
<td>7.44</td>
<td>3.94</td>
<td>6.25</td>
<td>1.87</td>
<td>3.83</td>
</tr>
</tbody>
</table>

*Bulk primitive mantle (PM) of Hart and Zindler (1986) is renormalized without including MnO, NiO, CoO, and P2O5. *Bulk depleted MORB mantle (DMM) of Workman and Hart (2005) is renormalized without including MnO, NiO, and P2O5. *Bulk depleted DMM is calculated by removing 3% batch melt from the DMM of Workman and Hart (2005) at 10 kbar using the BG15 melting model (Behn & Grove, 2015). *Bulk lower continental crust (LCC) of Hacker et al. (2015) is renormalized without including MnO.
As mantle moves upward along a pressure-temperature path, the mantle temperature must be adjusted for the latent heat of melting. The latent heat of melting, which decreases the mantle temperature, is estimated by:

$$\Delta T = \frac{FL}{C_p}$$

(10)

where $\Delta T$ is temperature reduction, $F$ is melt fraction, $L$ is latent heat of melting, and $C_p$ is specific heat capacity. Melting occurs when the corrected mantle temperature is higher than mantle solidus and continues until the temperature is below the solidus due to conductive cooling from the surface.

The mantle solidus ($T_{solidus}$) is pressure-dependent (Till et al., 2012). In the spinel stability field ($p \geq 9$ kbars), $T_{solidus}$ is given by:

$$T_{solidus} = 1212 + 11.99(p) - 97.33(1 - \text{Mg}#) - 87.76(\text{NaK}#) + 3.44(\text{TiO}_2) - 4.58(\text{K}_2\text{O})$$

(11)

while in the plagioclase stability field ($p < 9$ kbars), $T_{solidus}$ is given by:

$$T_{solidus} = 1216 + 10.44(p) - 72.83(1 - \text{Mg}#) - 194.9(\text{NaK}#) + 24.08(\text{TiO}_2) - 1.55(\text{K}_2\text{O})$$

(12)

where $\text{TiO}_2$ and $\text{K}_2\text{O}$ are contents in the melt. The Mg and NaK numbers of the melt are defined by:

$$\text{Mg}# = \frac{\text{MgO}}{\text{MgO} + \text{FeO}}$$

(13)

$$\text{NaK}# = \frac{\text{Na}_2\text{O} + \text{K}_2\text{O}}{\text{Na}_2\text{O} + \text{K}_2\text{O} + \text{CaO}}$$

(14)

The content of oxides in the melt are estimated by the nonmodal batch melting equation:

$$C'_m = \frac{C_0}{D'_i + F(1 - P'_m)}$$

(15)

where $C'_m$ is concentration of major element oxide ($i$) in the melt ($m$) at each melt step, $C_0$ is initial concentration, $D'_i$ is bulk partition coefficient of oxide ($i$) in solid phase ($s$), $P'_m$ is bulk partition coefficient of oxide ($i$) in melt ($m$), $F$ is melt fraction.

### 3.2.2. Melt Migration

To estimate the aggregate melt composition and the resultant crustal thickness, it is important to determine the pattern of melt migration. We assume that the melt first percolates vertically upward through the mantle column until it encounters a permeability boundary (e.g., top of the melting region), then migrates laterally without further chemical interaction along this boundary and finally pools beneath the ridge axis (Ghods & Arkani-Hamed, 2000; Kelemen & Aharanov, 1998; Magde et al., 1997; Magde & Sparks, 1997; Sparks et al., 1993; Sparks & Parmentier, 1991). Compared to the solid mantle flow, the melt is assumed to migrate to the ridge axis instantaneously once it is generated. The most important factor controlling the total melt pooled beneath the ridge axis is how far the melt will migrate horizontally before it freezes in the mantle (i.e., the horizontal length scale for melt migration to the ridge axis). We test the effects of different melt pooling width ($W_{pool}$) on the crustal thickness and aggregate melt composition (Figure 4).

The aggregate melt composition beneath a spreading ridge is estimated by pooling all incremental melts within a distance of $W_{pool}$ from the ridge axis and weighting them by the melt production rate (Behn & Grove, 2015). The crustal thickness is estimated by integrating the melt production rate of the concerned region and dividing by the spreading rate (Forsyth, 1993). The melt production rate is the integration of the melt productivity ($dF/dz$) and the mantle upwelling velocity over the area of the relevant model grid.
The horizontal and vertical grid spacings are 1 km and 0.1 km, respectively. The equations are described by (Forsyth, 1993; Behn & Grove, 2015):

$$H = \frac{1}{2U} \int \left[ \frac{dF}{dz} - u_z \right] dx dz$$

(16)

$$C_{aggregate}^i = \left[ \left( C_m^i \frac{dF}{dz} - u_z \right) \int \left[ \left( C_m^i \frac{dF}{dz} - u_z \right) dx dz \right] \right] dx dz$$

(17)

where \(F\) is melt fraction, \(z\) is depth, \(H\) is crustal thickness, \(U\) is half-spreading rate, \(u_z\) is vertical component of mantle flow velocity, \(C_{aggregate}\) is the aggregate melt composition beneath the ridge axis, \(C_m^i\) is concentration of major element oxide \((i)\) in the melt \((m)\) at each melting grid in the model domain.

### 3.3. Fractional Crystallization

Due to the cooling effect of shallow mantle lithosphere, the aggregate melt undergoes fractional crystallization before extraction at the ridge axis. To account for this process, we use the model of Yang et al. (1996), in which the fractional crystallization path (i.e., the liquid line of descent) was calculated as a function of melt composition and pressure between 0.001 and 10 kbars. We assume that the crystallization pressure corresponds to the depth where the melting ceases beneath the ridge axis based on our thermal model. We derive major element composition for each step of fractional crystallization, which allows us to compare the simulated melt composition to MORBs data corrected to the same MgO content (Behn & Grove, 2015; Gregg et al., 2009). For example, we calculate Fe8.0 and Na8.0 as the FeO and Na2O content at an MgO content of 8.0 wt %. These commonly used geochemical proxies provide constraints on the depth (Fe8.0) and extent (Na8.0) of mantle melting (Klein & Langmuir, 1987).

The root mean square (RMS) of the differences between the predicted liquid line of decent (LLD) and the observed major element contents as calculated by the following, is used to constrain model parameters:

$$RMS = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (X - X_L)^2}$$

(18)

where \(X\) is the observed major element content (e.g., FeO and Na2O), \(X_L\) is the predicted major element content determined by the LLD at the same MgO value with \(X\), and \(N\) is the total number of observations. Constrained by the observed crustal thickness and predicted LLDs, we then estimate the best fitting mantle potential temperature and mantle source composition of the study region.

### 4. Model Results

We calculate crustal thickness and major element content of the aggregate melt as a function of mantle potential temperature \(T_p\), half-spreading rate \(U\), mantle source composition, and melt pooling width \(W_{pool}\) (Figure 4). In this initial analysis, the fractional crystallization process of the aggregate melt is not considered. Among all the controlling parameters, mantle potential temperature has the greatest effect on the predicted crustal thickness and major element content (Figures 4a–4c). Increasing \(T_p\) produces a larger melt zone and greater total degree of melting (Figures 3e–3h), which results in systematically thicker crust, higher FeO, and lower Na2O content of the aggregate melt (Figures 4a–4c). Half-spreading rate has a strong effect on the crustal thickness and major element content only when \(U\) is less than 2 cm/yr, especially for \(U\) of 0.5–1 cm/yr; the influence of half-spreading rate decreases with increasing mantle potential temperature (Figures 4a–4c).

To assess the influence of mantle source composition, we examine three mantle end-members including primitive mantle (PM) (Hart & Zindler, 1986), depleted MORB mantle (DMM) (Workman & Hart, 2005), and more depleted DMM (Behn & Grove, 2015). This later composition is created by extracting melt (e.g.,
2%) from the initial DMM composition using BG15 melting model. Mantle source composition has a small effect on the crustal thickness (Figure 4a). As the mantle solidus increases with increasing mantle depletion, the model with the PM source generates slightly thicker crust compared to the DMM and more depleted DMM sources (Workman & Hart, 2005). The aggregate melt composition is greatly affected by the initial mantle source composition (Figures 4b and 4c). Because of the relatively lower FeO and higher Na2O content in the enriched PM composition (Table 2), the resulting aggregate melt has much lower FeO and higher Na2O content compared to the DMM and more depleted DMM composition.

The effect of the melt pooling width \( W_{\text{pool}} \) on the crustal thickness is greater at higher mantle potential temperature and faster half-spreading rate (Figures 3 and 4d). The \( W_{\text{pool}} \) has a moderate influence on the aggregate melt chemistry (Figures 4e and 4f). The Na2O content in the aggregate melt increases with increasing melt pooling width, because greater amount of off-axis melt with relatively higher Na2O content (Figure 2d) pools beneath the ridge axis. However, the effect of \( W_{\text{pool}} \) on the FeO content is complex and dependent on mantle potential temperature (Figure 4e). The effect of \( W_{\text{pool}} \) is small when it is greater than 100 km (Figures 4d–4f).

4.1. Predicted Mantle Potential Temperature of the SCS Subbasins

We estimate the appropriate mantle potential temperature of the SCS to explain the observed crustal thickness. Considering the relatively small dependence of the crustal thickness on mantle source composition and wide melt pooling zone (more than 100 km) (Figure 4a), the models with DMM composition and \( W_{\text{pool}} \) of 100 km are set as reference cases for the following discussion. For the crustal thickness in the east subbasin (4.8–6.3 km), as derived from \( P \) wave velocity model, the required mantle potential temperature varies from 1,350 to 1,375 °C; meanwhile for the SW subbasin (4–6.3 km), the mantle potential temperature varies from 1,325 to 1,375 °C (Figure 4d).

4.2. Predicted Mantle Source Compositions of the SCS Subbasins

4.2.1. Single End-Member Source

We use the primitive mantle (PM) (Hart & Zindler, 1986), the depleted MORB mantle (DMM) (Workman & Hart, 2005), and a more depleted DMM (e.g., DMM—2% melt) (Behn & Grove, 2015), which have increasing degrees of mantle depletion, as starting mantle source compositions for the SCS (Figures 5 and S5). The PM model represents the average chemical composition of undepleted mantle after the segregation in Earth’s core but before the extraction of continental crust, and the PM is assumed as the composition of the deep mantle (Hart & Zindler, 1986; Lyubetskaya & Korenaga, 2007; McDonough & Sun, 1995). The DMM model is the average source reservoir of MORBs, which has been depleted by 2–3% melt extraction compared to the PM (Workman & Hart, 2005). The more depleted DMM model is calculated by extracting a few percent of melt from the DMM composition (e.g., DMM—2% melt). As \( T_p \) increases, the FeO content in the aggregate melt increases (Figure 4b), and thus the predicted LLD of FeO moves upward (Figure 5a). While the Na2O content in the aggregate melt decreases with increasing \( T_p \) (Figure 4c), the predicted LLD evolves downward (Figure 5b). As the assumed degree of prior melt extraction from the mantle source (i.e., the depletion degree of mantle source) increases, the FeO content increases (Figure 4b), but the Na2O decreases (Figure 4c) at the same \( T_p \). Thus, the predicted LLDs of FeO and Na2O evolve in the opposite direction (Figure 5). \( W_{\text{pool}} \) has a relatively greater effect on the RMS values of the predicted LLD when \( W_{\text{pool}} \) is less than 100 km (Figures 6, and S6, S7).

For the east subbasin, the LLD predicted by the model with the DMM composition and mantle potential temperature of 1,350 °C explain most of the observed FeO and Na2O contents (Figures 5a, 5b, and 6c). The appearance of plagioclase or augite in the melt would result in rapid decrease of Al2O3 and CaO contents (Gale et al., 2014). However, the CaO and Al2O3 contents of the SCS basalt samples do not show clear crystallization trends (Figure S5). Thus, the model parameters were mainly constrained by the FeO and Na2O contents, which have relatively clear crystallization path (Figure 5). For models with the PM composition, the predicted LLD with \( T_p \) of 1,400 °C could fit a few observations of the east subbasin (Figures 5c and 5d). However, the predicted crustal thickness at the same \( T_p \) is much greater than seismically determined crustal
thickness (Figure 4a). Models with a more depleted DMM (DMM—2% melt) could not fit the observed crustal thickness, FeO, and Na2O simultaneously (Figures 5e, 5f, and S7).

For the SW subbasin, models with single-source mantle for any combinations of $T_p$ and $W_{pool}$ can not fit the observed crustal thickness, FeO, and Na2O simultaneously (Figures 5, 6 and S6, S7). For example, at $T_p$ of 1,300 °C, the predicted LLD with the DMM composition fits most of the observed FeO of the SW subbasin (Figure 5a), while the LLD plots significantly above the observed Na2O contents (Figure 5b).

4.2.2. Mixing of Two End-Member Sources

We further examine models with mixing of two end-member sources. Here the $W_{pool}$ is set at 100 km, due to its small effect on the predicted crustal thickness and melt composition (Figures 4d–4f). For the east subbasin, entraining a small proportion of PM in the DMM source could also explain most of the observations (Figures 7a–7c). However, mixtures of PM and DMM mantle sources can not explain the FeO and Na2O contents of basalt samples in the SW subbasin (Figures 7d–7f). To explain these compositional data from the SW subbasin, a more depleted DMM contaminated by a fraction of lower continental crust (Hacker et al., 2015) is required (Figures 8d–8f and S8f), indicating that a complex mantle source exists in the SW subbasin. By contrast, no contribution of lower continental crust is needed for the east subbasin (Figures 8a–8c). Moreover, models with a mixture of PM and LCC could not fit the observations in either the east or SW subbasin (Figure S9).

We then calculate the crystallization paths and estimate the $F_{8.0}$ and $N_{8.0}$ values of the SCS subbasins (Figure 9). For the east subbasin, the DMM composition and a $T_p$ of 1350 °C are assumed. The estimated $F_{8.0}$ and $N_{8.0}$ of the east subbasin (site U1431) is 9.0 ± 0.7 and 2.9 ± 0.2, respectively, which are within the range of global mid-ocean ridge values (Figure 10). For the SW subbasin, a more depleted DMM (e.g., DMM—3% melt) contaminated by 3% LCC (Hacker et al., 2015), and $T_p$ of 1,350 °C are assumed. The estimated $F_{8.0}$ and $N_{8.0}$ of the SW subbasin (sites U1433 and U1434) is 7.6 ± 1.0 and 2.5 ± 0.35, respectively, which are lower than that of the global mid-ocean ridge values (Figure 10). The CaO, Al2O3, and Sr/Nd of MORBs in the SCS vary greatly and do not show clear crystallization trends (Figure S10). The predicted LLDs do

---

Figure 5. Calculated FeO and Na2O versus MgO contents for models with different mantle source compositions and mantle potential temperatures. The observed FeO and Na2O contents are selected from Zhang et al. (2018b). Site U1431 is located in the east subbasin, and sites U1433 and U1434 are located in the southwest subbasin. The crystallizing phases that correspond to changes in the liquid line of descent slope are marked in panels c and d. The half-spreading rate of 2 cm/yr and $W_{pool}$ of 100 km are assumed in the models. Ol, olivine, plag, plagioclase, and aug, augite.
not provide good fits to the observed CaO and Al₂O₃ variations. Moreover, we only consider the melting of spinel lherzolite, which is unable to explain the relatively lower CaO content of the east subbasin resulting from pyroxenite melting (Figure S10b) (Zhang et al., 2018b).

5. Discussion

5.1. Factors Controlling Crustal Thickness and Major Element Contents of the SCS

The predicted crustal thickness and major element geochemistry are greatly affected by mantle potential temperature, which controls the thermal structure beneath the ridge axis (Behn & Grove, 2015; Gregg et al., 2009). Mantle source compositions have relatively small effects on the predicted crustal thickness, but large influence on the major element geochemistry (Figures 4 and 10). Higher mantle potential temperature will result in higher Fe₈.₀ and lower Na₈.₀ as more melt is generated. Mantle depletion will lead to higher Fe₈.₀ but lower Na₈.₀ because of the expected increase in FeO and decrease in Na₂O in the mantle source (Table 2). The composition of lower continental crust (Hacker et al., 2015) is distinct from the depleted MORB mantle (Workman & Hart, 2005) or primitive mantle (Hart & Zindler, 1986), thus adding a fraction of LCC will greatly change the predicted Fe₈.₀ and Na₈.₀.

Figure 6. Calculated root mean square (RMS) of the differences between the predicted liquid line of descent (LLD) and the observed FeO and Na₂O contents of the east (a–c) and southwest (d–f) subbasins as a function of melt pooling width \( W_{pool} \). The acceptable RMS maximums (white contours) are constrained by the RMS of the predicted LLDs that fit the upper or lower limits of the observations (Figure 5). Due to greater variations in the FeO and Na₂O contents (Figure 5), the RMS maximum of the southwest subbasin is greater than that of the east subbasin. The areas covered with diagonal lines are the appropriate model solutions constrained by crustal thickness (blue lines), FeO (green lines), and Na₂O content (red lines). The small black dots indicate tested models with different mantle potential temperatures and melt pooling widths. The half-spreading rate is set as 2 cm/yr and the mantle source is assumed as the depleted MORB mantle.
Half-spreading rate only has a large influence the predicted crustal thickness and major element geochemistry when $U$ is less than 2 cm/yr. In both of the SCS subbasins, the half-spreading rates are constant at about 2 cm/yr before the cessation of seafloor spreading (Li et al., 2014). However, a narrow zone with thin crust (<5 km) was observed in the east subbasin along the fossil spreading ridge through analyzing seismic profiles (Zhao et al., 2018). Furthermore, systematic variations in the basalt composition at sites U1433 and U1434 (Figure 1) indicate a decrease in the degree of mantle melting at these sites (Sun et al., 2020). These phenomena suggest that the half-spreading rate decreased as seafloor spreading ceased in the SCS; however, limited resolution in the magnetic anomalies do not allow us to formally test this hypothesis (Li et al., 2014).

If we would assume an ultraslow spreading rate of 0.5 cm/yr, the required mantle potential temperatures in the east and SW subbasins would have increased by 25 °C (Figure 11).

The melt pooling width has a large effect on the predicted crustal thickness and major element geochemistry only when $W_{pool}$ is less than 100 km. However, the lateral scale of melt migration beneath the spreading ridge is not well constrained. Gregg et al. (2009) used 3-D mid-ocean ridge models with $W_{pool}$ of 75 km to simulate crustal thickness and major element variations observed at the Siqueiros transform fault. Using calculations of the crystallization rates at ridges with different spreading rates, Hebert and Montési (2010) proposed a strong permeability barrier beneath the ridge axis, which facilitates the buoyant melts to transport to the ridge axis. The predicted width of melt pooling increases with spreading rate and extends 20–160 km off axis for spreading rates ranging from 1 to 10 cm/yr. However, the Hebert and Montési (2010) model significantly underestimates the crustal thickness at ridges with half-spreading rate less than 2 cm/yr because of the narrow width of the permeability barrier (<50 km). They speculated that such difficulty may indicate a different lateral melt focusing mechanism at ultraslow spreading rates.

**Figure 7.** Calculated root mean square of the differences between the predicted liquid line of descent and the observed FeO and Na$_2$O contents for models with the DMM contaminated by different proportion of PM. The half-spreading rate of 2 cm/yr and melt pooling width of 100 km are assumed in the models.
Although we assume $W_{\text{pool}}$ of 100 km, the effective melt pooling width varies for different spreading rates (Figure 3). For models with half-spreading rate less than 1 cm/yr, $W_{\text{pool}}$ of 100 km results in complete melt pooling (i.e., all generated melts contribute to crust creation) (Figures 3a and 3b). For models with narrow melt pooling, slightly higher mantle potential temperature is needed to explain the observed crustal thickness and basalt composition (Figure S11). Moreover, model results with $W_{\text{pool}}$ of 100 km could well explain the observed crustal thickness and major element geochemistry of global mid-ocean ridge samples (Figure 12). Given the observed variations in the estimated mantle potential temperatures of the SCS, the half-spreading rate of 2 cm/yr and melt pooling width of 100 km are assumed in the models.

### 5.2. Mantle Potential Temperature and Source Composition of the SCS Subbasins

Constrained by the observed oceanic crustal thickness and basalt major element contents, we estimate mantle potential temperature and source composition of the SCS subbasins prior to the cessation of seafloor spreading. For the east subbasin, the estimated mantle potential temperature varies in a range of 1,350–1,375 °C, which is comparable to that of normal mid-ocean ridges away from mantle plumes (Dalton et al., 2014). Given the half-spreading rate of 2 cm/yr in the east subbasin, a model with depleted MORB mantle and mantle potential temperature of 1,350–1,375 °C can explain most of the observations (Figure 11). A few percent of primitive mantle are allowed in the mantle source model of the east subbasin (Figure 7), indicating potential influence of deep mantle. The crystallization temperature of the primitive

![Figure 8](image-url). Calculated root mean square of the differences between the predicted liquid line of descent and the observed FeO and Na$_2$O contents for models with a more depleted DMM (e.g., DMM—3% melt) contaminated by a fraction of lower continental crust (LCC) (Hacker et al., 2015). The composition of the more depleted DMM is calculated by extracting 3% batch melt from the DMM. The half-spreading rate of 2 cm/yr and melt pooling width of 100 km are assumed in the models.
olivine at site U1431 is estimated to be 1,350 °C, which is much higher than that of the MORBs at normal mid-ocean ridges but comparable to that of the Iceland ocean island basalts (OIBs) (Yang et al., 2019), and this suggests the possibility of the influence of mantle plume on the SCS ridge magmatism at the east subbasin (Yang et al., 2019). The elevated Pb isotope composition of basalt samples from site U1431 could be explained by the influence of the Hainan mantle plume (Zhang et al., 2018b). However, the normal mantle potential temperature of 1,350–1,375 °C, oceanic crustal thickness of 5–6 km (Ruan et al., 2016; Zhao et al., 2018) are inconsistent with the existence of a large mantle plume that produced significantly thickened crust and uplifted topography (Campbell, 2007; Dordevic & Georgen, 2016; Ito et al., 2003).

Yang et al. (2019) proposed a model of revised eclogite-rich low buoyancy plume generated by subducting systems around the SCS area to explain these contradictions. Significantly lower bulk-rock CaO content of site U1431 basalts indicates that an eclogite/pyroxenite-rich component rising from a greater mantle depth could have contributed to the mantle source of the east subbasin (Herzberg & Asimow, 2008; Zhang et al., 2018b). Such lower bulk-rock CaO content can not be explained by our models assuming only melting of spinel lherzolite (Figure S10). Moreover, the estimated crustal thickness, Fe8.0, and Na8.0 of the east subbasin is comparable to that of the global mid-ocean ridge segments (Figure 12), implying that the SCS east subbasin samples are produced at a similar spreading regime as at mature mid-ocean ridges. Thus, we assume that the mantle source in the east subbasin prior to the cessation of seafloor spreading is mainly composed of the depleted MORB mantle, and is slightly contaminated by subduction-related component (Yang et al., 2019; Zhang et al., 2018b).

For the SW subbasin, the estimated mantle potential temperature is 1,325–1,375 °C, but the mantle source is significantly different from that of the east subbasin. The best mantle source model of the SW subbasin is composed of the more depleted DMM mixed with a fraction (2–5%) of lower continental crust before the cessation of seafloor spreading (Figures 8–10). The depleted DMM is calculated by extracting fractional melting from the depleted MORB mantle source of Workman and Hart (2005), which is a global average of the MORB mantle source. The more depleted DMM of the SW subbasin may indicate a slight deviation from the global average DMM composition and/or a more complicated 3-D patterns of melt pooling (Behn & Grove, 2015; Magde & Sparks, 1997). Sr-Nd-Pb isotope compositions of MORBs from sites U1433 and U1434 reveal the influence of lower continental crust (Sun et al., 2020). The variation trends of Nb/Th and Ta/U ratios of site U1500, which are not sensitive to fractional crystallization and could be used to reflect the origin of the mantle (Niu & Batiza, 1997), are also consistent with that of U1433 and U1434, revealing the influence of lower continental crust (Figure 13). Thus, we conclude that the subridge mantle beneath the east subbasin during the initial spreading stage was also modified by a fraction of lower continental crust.
Mantle heterogeneity may play a major role in the SCS mantle evolution and melting (Sun et al., 2020; Yang et al., 2019; Zhang et al., 2018b, 2018c). Given the similar chemical compositions of U1500 with U1433 and U1434, which are different from that of U1431, it is proposed that the contribution of the lower continental crust to the subridge mantle melting decreases from the initial to mature spreading stage in the SCS (Figure 14).

The spreading regime at fossil ridges in the east and SW subbasin may represent different stages of mantle evolution in the SCS. Magnetic studies (Briais et al., 1993; Li et al., 2014; Taylor & Hayes, 1980) reveal that the seafloor spreading in the east subbasin has lasted for about 17–18 Ma (from ∼32–33 to ∼15 Ma), while...
the SW subbasin experienced a significantly shorter spreading history of only 7–8 Ma (from ∼23–24 to ∼16 Ma). The convective upper mantle could be contaminated by the lower continental crust during continental rifting by crustal delamination (e.g., Escrig et al., 2004; Hanan et al., 2004; Jagoutz & Behn, 2013; Meyzen et al., 2005; Nishio et al., 2007; Regelous et al., 2009; Willbold & Stracke, 2010; Zhang et al., 2018b). As seafloor spreading continues, the contaminated mantle undergoes decompression melting and gradually moves away from the ridge axis, and the deeper unaltered mantle column moves upward and occupies the subridge mantle source region. This process would result in progressive decrease of the lower continental crust in the subridge mantle. We hypothesize that due to the relatively short spreading history, the lower

Figure 12. Comparison of crustal thickness and major element geochemistry of the SCS with global mid-ocean ridges. The available seismically determined crustal thickness of global mid-ocean ridge segments are selected from Chen (1992), White et al. (2001), Dick et al. (2003), Jokat et al. (2003), and Harding et al. (2017). The gray dots in panels b–d are individual segment averages selected from global MORB dataset of Gale et al. (2014) for segments away from the nearest hotspot by more than 750 km. The yellow triangles are the averages of global data binned in half-spreading rate of 1 cm/yr increment.

Figure 13. Comparison of Nb/Th versus Th (a) and Ta/U versus U (b) for basalt samples of sites U1433 and U1434 with site U1500. The bulk-rock trace element contents of site U1500 are selected from Yu and Liu (2020). Site U1500 is located at the northern margin of the east subbasin, and sites U1433 and U1434 are located near the fossil spreading ridge in the southwest subbasin. Trace element contents of N-MORB, E-MORB, and OIB are from Sun and McDonough (1989). Trace element abundances of LCC are from Hacker et al. (2015).
The continental crust signal is still retained in the basalt samples of the SW subbasin ridge axis. However, the subridge mantle source composition and mantle melting processes are complex of the SCS and thus more detailed geophysical and geochemical studies should be conducted to reveal mantle evolution of the SCS.

6. Conclusions

Constrained by the seismically determined crustal thickness and the major element composition of the basalts sampled near fossil spreading centers in the SCS, we conduct computational geodynamic models to constrain mantle potential temperature and mantle source composition beneath the SCS subbasins, yielding the following main conclusions:

(1) The mantle potential temperatures of the east and SW subbasins are comparable.
(2) The mantle source compositions of the SCS subbasins have distinct differences. For the east subbasin, the subridge mantle source before the cessation of seafloor spreading is mainly composed of the depleted MORB mantle and the mantle source may be contaminated by small amounts of subduction-related eclogite/pyroxenite components. For the SW subbasin, a fraction of the lower continental crust appears...
to have played an important role in the magma source, resulting in relatively lower Fe_{8.0} and Na_{8.0} values compared to the east subbasin.

(3) Basalt samples of site U1500 shows similar chemical compositions as that of U1433 and U1434, implying that the influence of the lower continental crust is maximum during the initial seafloor spreading and decreases as the ridge melts become more steady state.

Acknowledgments

We are grateful for helpful discussion with Liyan Tian and constructive reviews and suggestions by anonymous reviewers, Editor Martha Savage and Isabelle Manighetti, and Associate Editor John Lasister. The bulk-rock major and trace element contents of IODP sites U1431, U1433, and U1434 are available in Zhang et al. (2018b). The bulk-rock major and trace element contents of site U1500 are selected from Yu and Liu (2020). The seismically determined site U1500 are selected from Yu and Liu (2020). The bulk-rock major and trace element contents of site U1500 are selected from Yu and Liu (2020).

References


Zhang ET AL.


Hebert, L. B., & Montési, L. G. (2010). Generation of permeability barriers during melt extraction at mid-ocean ridges. Geochemistry, Geophysics, Geosystems, 11, Q12S08. https://doi.org/10.1029/2010GC003270


