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7Research Faculty of Agriculture, Hokkaido University, Sapporo 064-8589 Japan
8Department of Forest Ecology, University of Helsinki, Helsinki 00014 Finland

9The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543 USA

Abstract. We seek to understand how biophysical factors such as soil temperature (Ts),
soil moisture (h), and gross primary production (GPP) influence CO2 fluxes across terrestrial
ecosystems. Recent advancements in automated measurements and remote-sensing approach-
es have provided time series in which lags and relationships among variables can be explored.
The purpose of this study is to present new applications of continuous measurements of soil
CO2 efflux (F0) and soil CO2 concentrations measurements. Here we explore how variation in
Ts, h, and GPP (derived from NASA’s moderate-resolution imaging spectroradiometer
[MODIS]) influence F0 and soil CO2 production (Ps). We focused on seasonal variation and
used continuous measurements at a daily timescale across four vegetation types at 13 study
sites to quantify: (1) differences in seasonal lags between soil CO2 fluxes and Ts, h, and GPP
and (2) interactions and relationships between CO2 fluxes with Ts, h, and GPP. Mean annual
Ts did not explain annual F0 and Ps among vegetation types, but GPP explained 73% and 30%
of the variation, respectively. We found evidence that lags between soil CO2 fluxes and Ts or
GPP provide insights into the role of plant phenology and information relevant about possible
timing of controls of autotrophic and heterotrophic processes. The influences of biophysical
factors that regulate daily F0 and Ps are different among vegetation types, but GPP is a
dominant variable for explaining soil CO2 fluxes. The emergence of long-term automated soil
CO2 flux measurement networks provides a unique opportunity for extended investigations
into F0 and Ps processes in the near future.

Key words: lags; moderate-resolution imaging spectroradiometer (MODIS); photosynthesis; soil CO2
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INTRODUCTION

Understanding the factors that influence patterns of

terrestrial CO2 fluxes across the globe is essential to

predict and manage the effects of the human carbon

footprint (Magnani et al. 2007). Soil CO2 efflux (or soil

respiration; F0) constitutes a significant (10–90%) com-

ponent of CO2 fluxes from terrestrial ecosystems (Hanson

et al. 2000), but the mechanistic understanding of F0

remains unclear because of the complexity of processes

involved. Here we present a synthesis study of the

application of continuous automated measurements of

soil CO2 fluxes to identify lags and relationships among

biophysical variables. Long-term continuous measure-

ments provide an opportunity to understand how

biophysical factors interact to regulate terrestrial CO2

fluxes and provide an opportunity to explore the timing of

biophysical controls on F0. The application of continuous

measurements of multiple biophysical variables will

increase with the growth of environmental networks

across multiple vegetation types (e.g., FLUXNET,

National Ecological Observatory Network [NEON],

Integrated Carbon Observation System [ICOS]).

Soil CO2 efflux provides information about the

interaction between soil processes and the atmosphere

as an integrated result of biological CO2 production at

the soil surface and changes in soil CO2 diffusivity in the

soil profile. It is the result of the combined contribution

of CO2 production (Ps) in the soil by autotrophic (roots

and mycorrhizae) and heterotrophic (decomposers)
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components (Hanson et al. 2000, Ryan and Law 2005)

and diffusion of CO2 through the porous medium. The

diffusion of CO2 in the soil is a function of exogenous

factors that affect porosity and tortuosity, such as soil

moisture, soil texture, and bulk density (Šimůnek and

Suarez 1993, Moldrup et al. 1999, Pumpanen et al.

2003). Consequently, Ps provides information on

biological activity because it represents the combined

contribution of the autotrophic and heterotrophic

components in the soil (Hanson et al. 2000, Ryan and

Law 2005). Variation in Ps is mainly dependent on

changes in root density, microbial community compo-

sition, quality and quantity of soil carbon pools, and

photosynthetic activity (Kuzyakov 2006).

The influences of soil temperature (Ts) and soil water

content (h) have consistently been used to explain

variation in F0 at different temporal scales among

vegetation types (e.g., Davidson et al. 2000, Curiel

Yuste et al. 2003, Reichstein et al. 2003, Ma et al. 2005),

and previous reviews have examined the influence of Ts

and h on F0 (Raich et al. 2002, Hibbard et al. 2005, Ryan

and Law 2005, Davidson and Janssens 2006). However,

in most cases, previous studies have been based on

manual CO2 soil chamber measurements that miss

multiple days of the year, night measurements, and

precipitation events.

Recent technological advances with automated soil

respiration chambers have greatly improved the time

resolution of F0 measurements (Goulden and Crill 1997,

Drewitt et al. 2002, Irvine and Law 2002, Savage and

Davidson 2003, Carbone et al. 2008). Alternatively,

continuous belowground CO2 concentration measure-

ments using solid-state CO2 sensors provide another

method (flux-gradient method) for automated measure-

ment of F0 and Ps (Hirano et al. 2003, Jassal et al. 2004,

Tang et al. 2005b, Pumpanen et al. 2008, Vargas and

Allen 2008a). The flux gradient method has the

advantage that F0, soil CO2 flux at depth i (Fi ), and Ps

can be calculated and compared with other methods

(e.g., F0 measured using the soil chamber method).

Because of the challenge of measuring soil processes,

only a few studies have investigated Fi and Ps (Davidson

and Trumbore 1995, Hashimoto and Suzuki 2002,

Takahashi et al. 2004, Fierer et al. 2005, Jassal et al.

2005, Pumpanen et al. 2008, Vargas and Allen 2008c),

particularly with regard to variation in Ts (Risk et al.

2002, Hashimoto and Komatsu 2006).

Here we used measurements obtained by autochambers

and solid-state CO2 sensors in the soil profile to calculate

F0 and Ps in four vegetation types at 13 study sites. We

concentrated on seasonal variation using mean daily

values derived from continuous measurements that

captured the seasonal influence of phenology (DeForest

et al. 2006), temperature and water (Irvine and Law 2002),

and photosynthesis (Högberg et al. 2001, Tang et al.

2005a, Bahn et al. 2009) on soil CO2 fluxes. We investigate

the influence of photosynthesis on F0 and Ps among

vegetation types using values of gross primary production

(GPP) derived from NASA’s moderate-resolution imag-

ing spectroradiometer (MODIS; Running et al. 2004). We
used GPP derived from MODIS because not all the sites

included in this study have instrumentation of eddy
covariance towers to measure GPP. (For a description of

the eddy covariance network FLUXNET, see Baldocchi
[2008].)

This study is novel in that it uses a unique data set on
long-term continuous measurements of F0 and Ps across
multiple vegetation types to better understand how

biophysical factors regulate soil CO2 fluxes. An advan-
tage of measuring soil CO2 fluxes continuously with

automated systems is the possibility to quantify lags
between environmental variables and CO2 fluxes

(Baldocchi et al. 2006, Gaumont-Guay et al. 2006, Liu
et al. 2006, Vargas and Allen 2008a). Using this

information we ask two interrelated questions: (1) Are
there seasonal lags between F0 and Ts, GPP, or h, and if

so, do these lags differ among sites and vegetation types?
(2) What are the relationships and interactions among

F0, Ts, h, and GPP within different vegetation types?
Here we test three related hypotheses. H1: Mean

annual GPP (derived from MODIS) would be a better
predictor of mean annual F0 and Ps than mean annual

Ts (measured in situ) across vegetation types. There is
increasing evidence of the importance of GPP at

multiple vegetation types (Janssens et al. 2001,
Reichstein et al. 2003, Bahn et al. 2008), and it is

relevant to explore the relationships between remote-
sensing estimations and in situ measurements. H2: Lags
between F0 and Ts or GPP can provide insights about

possible timing of processes associated with autotrophic
and heterotrophic components of F0 (e.g., Braswell et al.

1997, McDowell et al. 2004, Baldocchi et al. 2006). We
postulate that if F0 increases with Ts and GPP (i.e., in

phase with zero lags) there may be a synchronized
temporal contribution of autotrophic and heterotrophic

activity at the seasonal scale. In contrast, if F0 increases
before Ts (i.e., out of phase with negative lags) but after

GPP (i.e., out of phase with positive lags) there may be
different temporal controls for autotrophic and hetero-

trophic activity at the seasonal scale. The mechanisms
that regulate lags at the seasonal scale could be driven by

the different contributions of autotrophic and hetero-
trophic respiration, which are influenced by plant

phenology (DeForest et al. 2006), photosynthesis
(McDowell et al. 2004, Baldocchi et al. 2006, Bahn et
al. 2009), and rhizosphere dynamics (Bahn et al. 2006,

Gaumont-Guay et al. 2008, Vargas and Allen 2008c).
H3: The influence of biophysical factors on regulating

daily F0 and Ps is different among vegetation types, but
general patterns may emerge, providing insights into the

mechanisms that control soil CO2 fluxes.

MATERIALS AND METHODS

Study sites

We included data from 13 sites in which in situ solid-

state soil CO2 sensors are being used and all but two data
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sets have been previously published in individual studies

(Table 1). Sites were located in six countries between

latitudes 618500 N and 218120 N and an altitudinal range

from 70 to 1850 m above sea level. Mean annual

temperatures ranged from 38 to 248C, and annual

precipitation ranged from 250 to 1650 mm (Table 2).

All sites measured soil CO2 concentrations at three or

more depths except one grassland site that used

automated soil respiration chambers in combination with

two soil CO2 sensors (Table 3). We grouped the study

sites by vegetation types including three deciduous forests

(DF), four evergreen coniferous forests (ECF), four

grasslands (GRA), and two mixed forests (MF; see Table

1). This categorical classification follows physiological

and morphological traits, and in most cases grouped sites

share similar mycorrhizal associations. Furthermore, the

characteristics of evergreen, deciduous, deciduous mixed

forest, and grassland are observable from remote-sensing

platforms (e.g., MODIS) and are key ecological proper-

ties for the determination of photosynthesis and respira-

tion. The results from this study must be corroborated in

the future using a larger network of sites with continuous

measurements of soil CO2 fluxes across multiple climatic

zones and vegetation types.

Field measurements of soil CO2 concentrations

Soil CO2 measurements were collected between 2000

and 2007, depending on the study site; dates used in this

study are reported in Table 3. At each site, soil CO2 was

continuously measured (mean hourly values) with

Vaisala CARBOCAP CO2 sensors (models GMM 222,

GMM 221, GMT 222, GMD 20, or GMP 343; Vaisala,

Helsinki, Finland) at multiple depths ranging between 0

and 50 cm (see Table 3). These small silicon-based CO2

sensors operate on the nondispersive infrared (NDIR)

single-beam dual-wavelength principle. The sensors were

calibrated periodically against reference gases, and

calibration details are reported in the main references

for each site (Table 1). In most cases, the sensors were

protected either with microporous Teflon tubing or

Gore-Tex fiber to avoid possible wetting during rainfall

events while allowing free gas exchange. Soil tempera-

tures (in degrees Celsius) were measured at the same

depths at which the CO2 sensors were installed. Soil

water content (in cubic meters per cubic meter) was

measured either at the same depth as the CO2 sensors or

within the range of their deployment (e.g., 2–16 cm

depth). Values of concentration of CO2 were automat-

ically corrected for temperature in the case of the GMP

343 sensors and corrected for temperature (other than

the GMP 343) and pressure using the ideal gas law

according to the manufacturer (Vaisala, Helsinki,

Finland). To reduce noise of measured CO2 concentra-

tions being amplified in the calculation of F0 and Ps, we

applied a Savitzky-Golay smoothing filter, which

preserves peak heights and widths of the original signal.

A similar approach was used by Vargas et al. (in press)

for continuous measurements of CO2 concentrations.

Soil CO2 efflux and soil CO2 production

Soil CO2 efflux values were obtained using automated

soil respiration chambers (sites DF49, HDF88, Hyy, and

Stu) or the flux gradient method (for the remaining sites;

Table 3). Soil CO2 production values were calculated

from soil CO2 concentrations using the flux gradient

method in all sites. The flux gradient method has been

verified using the soil chamber method at each site and is

discussed in the main sources for each site (Table 1).

Automated soil respiration chambers have been widely

used for several years (Drewitt et al. 2002, Savage and

Davidson 2003, Pumpanen et al. 2004), and descriptions

of these systems at each study site are also available in

the main sources provided in Table 1.

When F0 or Ps values were calculated with soil CO2

concentrations we used flux gradient theory (DeJong

and Schapper 1972). This method is based on Fick’s law

of diffusion:

F ¼ �Ds

]C

]z
ð1Þ

where F is the flux density of CO2 (in micromoles per

square meter per second), Ds is the gaseous diffusion

coefficient of CO2 in the soil (i.e., soil CO2 diffusivity in

square meters per square second), and ]C/]z is the rate

of change of the molar CO2 concentration (in micro-

moles per cubic meter) with depth z (i.e., the vertical

gradient of soil CO2 concentration). Ds can be estimated

as

Ds ¼ Daes ð2Þ

where Da is the CO2 molecular diffusivity of CO2 in air,

e is the soil air-filled porosity, and s is the tortuosity. The
product of es has been defined as the tortuosity factor n
(Jury et al. 1991), so that

Ds ¼ Dan: ð3Þ

The effect of temperature and pressure on Da is given by

Da ¼ Da0

T

T0

� �1:75 P0

P

� �
ð4Þ

where Da0 is a reference value of Da (1.47310�5 m2/s) at

T0 (293.15 K) and P0 (1.0133105 Pa) according to Jones

(1992). The tortuosity factor can be calculated using

several general models (e.g., Moldrup et al. 1999) or

measured and evaluated from an empirical relationship

developed for each study site (see Hirano et al. 2003,

Pumpanen et al. 2003, Jassal et al. 2005). An accurate

determination of the diffusivity factor is essential

because CO2 fluxes are influenced by soil moisture, soil

texture, and soil bulk density, all of which affect the

diffusivity. In this study, we used the site-specific n for

sites DF49, HDF88, JP1, JP2, Hyy, and we used the

Moldrup model (Moldrup et al. 1999) for the remaining

study sites. Although site-specific measurement of the

diffusivity is the recommended method, previous studies

have found good agreement between F0 calculated using
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TABLE 1. Ancillary information of sites included in this study.

Vegetation type Site name Site ID Latitude, longitude Country

DF Hyytiälä Hyy 618500 N, 248170 E Finland
ECF Blodgett Forest Blo 388530 N, 1208370 W USA

James Reserve 338480 N, 1168460 W USA

GRA JRh
MF JRw

Tonzi Ranch 388430 N, 1208960 W USA
GRA TonO

DF TonU
MF Broadleaf forest JP1 428440 N, 1418440 E Japan

ECF DF49 DF49 498510 N, 1258190 W Canada
ECF HDF88 HDF88 498310 N, 1248540 W Canada

DF Larch forest JP2 428440 N, 1418310 E Japan
GRA Sevilleta LTER Sev 348200 N, 1068430 W USA

GRA Stubai Valley Stu 478070 N, 118190 E Austria

DF El Eden Eden 218120 N, 878110 W Mexico

Note: Abbreviations are: DF, deciduous forest dominated by woody vegetation with percent cover .60% and height .2 m and
an annual cycle of leaf-on and leaf-off periods; ECF, evergreen coniferous forest land dominated by woody vegetation with percent
cover .60% and height .2 m and most trees remain green all year; GRA, grasslands with herbaceous cover, with tree and shrub
cover ,10%; MF, mixed forests dominated by a mosaic of deciduous and evergreen trees with percent cover .60% and height .2
m; LTER, Long Term Ecological Research center.

TABLE 2. Climate and soil characteristics of sites included in this study.

Site name
Site
ID

Elevation
(m)

MAP
(mm)

MAT
(8C) Soil type

Sand
(%)

Silt
(%)

Clay
(%)

Bulk density
(Mg/m3)

Soil porosity
(m3/m3)

Hyytiälä Hyy 181 709 3.8 Haplic podzol 69.2 20 10.8 0.6 0.61
Blodgett Forest BloC 1315 1290 9 Ultic haploxeralf 60 28 12 0.58 0.78
James Reserve 1640 507 10.3 Entisol 83 10 7

JRh 0.9 0.66
JRw 1.2 0.55

Tonzi Ranch 177 562 16.5 Lithic haploxerepts
TonO 48 42 10 1.64 0.38
TonU 37.5 45 17.5 1.58 0.4

Broadleaf forest JP1 70 1200 6.5 Volcanogenous regosol NA NA NA 0.42 0.8
DF49� DF49 300 1320 8.3 Humo-ferric podzol 69.3 22.6 8.1 1.05 0.6

85.6 13.1 1.3 1.5 0.43
HDF88� HDF88 170 1550 9.6 Humo-ferric podzol 39.9 39.9 20.2 0.85 0.68

41.9 40.2 17.9 0.95 0.64
Larch forest JP2 140 1250 7.3 Volcanogenous regosol NA NA NA 0.46 0.86
Sevilleta LTER Sev 1600 250 13.2 Typic Haplargids 68 22 10 1.51 0.43
Stubai Valley Stu 1850 1097 3 Dystric cambisol 41.9 30.8 27.3 0.91 0.66
El Eden Eden 10 1650 24.2 Histosol 63 22 15 0.61 0.77

Notes: Soils at JP1 and JP2 are classified as sandy loam, which usually contains 65–85% sand and 0–35% silt, with mean values
for sand (75%), silt (18%), and clay (7%). Abbreviations: NA, data not available; MAP, mean annual precipitation, MAT, mean
annual temperature; LTER, Long Term Ecological Research center.

� The first set of soil characteristic values is for the 0–10 cm horizon; the second set of values is for the 10–50 cm horizon.
� The first set of soil characteristic values is for the 0–10 cm horizon; the second set of values is for the 10–60 cm horizon.
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the soil chamber method and F0 calculated using the flux

gradient method of the Moldrup model (Tang et al.

2005b, Baldocchi et al. 2006, Vargas and Allen

2008a, b, c).

Assuming a constant rate of CO2 production in the

upper part of the soil profile, F0 can be calculated as

follows (Tang et al. 2005b):

F0 ¼
ziþ1Fi � ziFiþ1

ziþ1 � zi
ð5Þ

where F0, Fi, and Fiþ1 are CO2 effluxes (in micromoles

per square meter per second) at depths z0, zi, and ziþ1 (in

meters), respectively. This approach has been found to

be more reliable than extrapolating the soil CO2

concentrations to the soil surface and using the gradient

between the surface and the first level or taking the

derivative of the empirically fit concentration–depth

curve at z¼ 0 (Amundson et al. 1998). The condition of

constant CO2 production in the upper part of the soil

profile may not be entirely met in productive ecosystems

where CO2 production follows an exponential decay

with depth. For each study site we estimated Fi at two

depths depending on where the CO2 sensors were

deployed (e.g., between 0.08 and 0.16 m; see Table 3).

Once Fi has been calculated for different levels in the

soil profile, Ps can be calculated from the difference

between the effluxes across adjacent levels as a flux

divergence (Šimůnek and Suarez 1993):

Ps ¼
Fi � Fiþ1

ziþ1 � zi
: ð6Þ

where Ps is the rate of soil CO2 production (in

micromoles per cubic meter per second) in the soil layer

between depths i and iþ1 (Table 3), but the CO2 storage

term was ignored in this equation (see Hirano et al.

2003). We used the shallowest layer in which sensors

have been installed to calculate Ps (see Table 3),

assuming that these shallow depths have the highest

root density (see Jackson et al. 1996). All calculations of

F0 and Ps were performed using mean hourly values and

then averaged as daily mean values for further analyses

reported in this study. Similarly, hourly values of Ts and

h were averaged as mean daily values and analyses were

done using these averages.

Gross primary production

On-site direct measurements of GPP are critical, but

we were not able to use GPP derived from eddy

covariance towers because not all the sites have these

measurements. Thus, to represent the seasonal GPP

trend in a systematic way, we used the value-added

product derived from MODIS (Running et al. 2004).

The product MOD17A2 was used for GPP values

(Running et al. 2004), and previous studies have

discussed in detail the validation of this product

(Turner et al. 2005, Xiao et al. 2005, Zhao et al. 2005,

Heinsch et al. 2006). We used MODIS Land Product

TABLE 1. Extended.

Dominant species Site history Main source

Pinus sylvestris prescribed burning in 1962 Pumpanen et al. (2008)
Pinus ponderosa plantation established in 1990 after clear-

cutting control plot
Tang et al. (2005b)

selective logging until 1966; since then,
protected

Vargas and Allen (2008c)

Bromus tectorum, Elymus elymoides
Quercus chrysolepis, Calocedrus decurrens,
Pinus lambertiana, Arctostaphylos
pringlei

grazing Baldocchi et al. (2006)
Brachypodium distachyon, Bromus
hordeaceous

Quercus douglasii
Quercus mongolica, Magnolia obovata,
Ulmus davidiana, Acer mono, Carpinus
cordata

natural forest growing after storm damage
by a typhoon in 1954

Hirano et al. (2003)

Pseudotsuga menziesii slash-burned 1943, planted 1949 Jassal et al. (2005)
Pseudotsuga menziesii harvested 1987, broadcast burned 1988,

planted 1988
Jassal et al. (2008)

Larix kaempferi the larch forest was planted in 1957–1959 Liang et al. (2004)
Bouteloua eriopoda human use and cattle grazing until 1973;

since then, protected
S. L. Collins, unpublished

data
Alchemilla vulgaris, Anthoxanthum
odoratum, Festuca rubra, Leontodon
hispidus, Trifolium repens

organic fertilization one cut, grazed in late
summer

M. Bahn, unpublished data

Bursera simaruba, Dendropanax arboreus,
Ficus cotinifolia, Guettarda combsii,
Jatropha gaumeri, Lonchocarpus castilloi,
Lonchocarpus rugosus, Nectandra
salicifolia, Piscidia piscipula, Vitex
gaumeri

natural forest growing after fire in 1989
and hurricane disturbance in 2005

Vargas and Allen (2008a)
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Subsets for a 3 3 3 km grid at each study site using the

average of all nine cells. These were derived from

MODIS products generated with Collection 4 from the

Oak Ridge National Laboratory Distributed Active

Archive Center (ORNL DAAC). Details about prepa-

ration of subsets including MODIS data reprocessing,

methods, and formats are available online.11 Temporal

interpolation was used to replace pixels that have quality

control flags indicating poor quality. The eight-day

MODIS GPP values were extrapolated to daily GPP

values (in grams of C per square meter per day) using a

Savitzky-Golay smoothing filter. We hereafter refer to

the values generated by the product MOD17A2 as GPP.

Analysis of soil CO2 efflux and production

To test H1, we calculated mean annual values of the

time series of Ts, GPP, F0, and Ps for each study site and

applied linear regression analysis across sites.

To explore the first question and H2, a cross-

correlation analysis using daily mean values between

F0 and Ts or GPP was performed to identify seasonal

lags among study sites. Cross-correlation analysis is a

measure of similarity of two different measurements as a

function of a time lag applied to one of them (Nielsen

and Wendroth 2003). In addition, F0 and Ps were

normalized with Eq. 7 to obtain F0 or Ps at a reference

temperature:

Y158C ¼ Y exp½B1ð15� TsÞ� ð7Þ

where Y is either F0 or Ps, 158C is the base temperature,

and Ts is soil temperature at depth of measured Ps (see

Table 3 for depths). Coefficients of nonlinear regressions

were estimated using the Levenberg-Marquardt method.

A cross-correlation analysis using daily mean values

between F0158C or Ps158C and h was also performed to

identify seasonal lag effects among study sites. Finally,

we tested how the cross-correlation coefficients between

F0 and Ts or GPP change seasonally with variation in h.
To explore the second question and H3 we used an

ordination approach using regression tree analysis

(Breiman et al. 1984) to represent F0 or Ps. We used

daily mean values of F0, Ps, Ts, GPP, and h after

including the lags calculated using cross-correlation

between variables. Regression tree analysis selects

variables that are best able to classify the response (F0

or Ps) into distinct clusters through a process known as

binary recursive partitioning. This is an iterative process

of splitting the data into partitions using the predictor

variable (Ts, h, or GPP) that explains the maximum

amount of the remaining deviance in the response

variable. A minimum node size of 10 was used, meaning

no node with fewer than 10 data cases (or data points)

was split (Breiman et al. 1984). The advantage of this

method is that the tree structure enables interpretation

of the explanatory nature of the independent variables.

All data analyses were undertaken using MATLAB

R2007a (MathWorks, Natick, Massachusetts, USA).

RESULTS

Relationships between F0 or Ps and Ts or GPP

at the annual scale

We did not find significant relationships (P . 0.1)

between mean annual Ts and mean annual F0 or mean

annual Ps when compared among study sites (Fig. 1A, C).

TABLE 3. Method used to calculate soil respiration (F0) and characteristics of soil CO2 sensor deployments for calculation of soil
CO2 production (Ps) at the study sites.

Site ID, by
vegetation type

CO2 sensor
model Period of measurements

Depth of CO2

sensors (cm)
Depth of
Ps (cm) F0 calculation

DF
Eden GMM 222 1 Jan to 31 Dec 2005 2, 8, 16 8.5 (2) flux gradient
JP2 GMD 20 22 Jun 2001 to 22 Jun 2002 0, 2, 11, 13 4.3 (1) flux gradient
TonU GMT 222 1 Apr 2003 to 16 Apr 2004 2, 8, 16 8.5 (1) flux gradient

ECF
Blo GMT 222 3 May to 10 Oct 2005 2, 8, 16 8.5 (1) flux gradient
DF49 GMM 221 13 Mar to 30 Dec 2003 10, 20, 50 25 (3) automated chambers (6)
HDF88 GMM 221 28 Jul 2005 to 30 Jul 2006 5, 15, 50 21.3 (3) automated chambers (6)
Hyy GMP 343 1 Aug 2004 to 17 Jul 2005 0, 5, 17, 27 6.8 (1) automated chambers (2)

GRA
JRh GMM 222 1 Jan to 31 Dec 2006 2, 8, 16 8.5 (4) flux gradient
Sev GMM 222 12 Jul to 24 Nov 2007 2, 8, 16 8.5 (3) flux gradient
Stu GMT 222 20 Jul 2006 to 20 Jul 2007 5, 10 3.8 (3) automated chambers (1)
TonO GMT 222 1 Apr 2003 to 16 Apr 2004 2, 8, 16 8.5 (1) flux gradient

MF
JP1 GMD 20 29 May 2000 to 20 May 2001 0, 2, 13, 17 4.3 (1) flux gradient
JRw GMM 222 1 Jan 2005 to 31 Dec 2006 2, 8, 16 8.5 (4) flux gradient

Notes: F0 was calculated with automated soil respiration chambers or using the flux gradient method. For details on sensor
deployment and validation of flux gradients and automated chambers methods see sources in Table 1. Numbers in parentheses
represent the number of replicates where Ps was measured. At Stu, F0 was used to calculate Ps. The flux gradient method has been
validated with the chamber method, and calculated F0 was calibrated spatially with manual and/or automated soil respiration
chambers (see sources in Table 1). Abbreviations of vegetation types are: DF, deciduous forest; ECF, evergreen coniferous forest;
GRA, grassland; MF, mixed forest. See Table 1 for details on each vegetation type.

11 hhttp://www.daac.ornl.gov/MODIS/modis.htmli
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In contrast, we observed a significantly positive relation-

ship between mean annual GPP and mean annual F0 (P ,

0.001, r2¼0.73) with a slope of 1.44 6 0.27 (mean 6 SE);

this positive relationship was also significant (P , 0.05)

for deciduous and evergreen coniferous forest sites alone

(Fig. 1B). We observed a marginally positive relationship

between mean annual GPP and mean annual Ps (P ¼
0.056, r2¼0.30) with a slope of 9.32 6 4.4 among all sites,

and this positive relationship was also significant (P ,

0.05) when considering only deciduous and evergreen

coniferous forest sites (Fig. 1D).

Cross-correlation analysis

Our results showed that significant (P , 0.05)

negative lags between 52 and 25 d between F0 and Ts

were associated with deciduous forests, indicating that

F0 increases before Ts at these sites (Table 4). The largest

negative lag was at the oak savanna site in California

(TonU), with 52 d, followed by a tropical forest in

Mexico (Eden), with 36 d. For mixed forests, the largest

negative lag was at the California site (JRw), with 24 d.

In contrast, for evergreen coniferous forests sites and

grassland sites there were no lags, indicating that F0 was

in phase with Ts (Table 4). We observed significant (P ,

0.05) positive lags between 88 and 5 d between F0 and

GPP in deciduous and mixed forests, indicating that F0

increases after GPP at these sites (Table 4). For

deciduous forests sites, the largest positive lag was at

Eden, with 88 d, followed by TonU. For mixed forest

the California site (JRw) had a larger positive lag (29 d)

than the Japan sites (5 d). For evergreen coniferous

forests sites, we observed negative significant (P , 0.05)

lags between F0 and GPP, indicating that F0 increases

before GPP at these sites. The largest negative lag was at

the Finland site (Hyy), with 24 d, followed by the

Canadian site (15 d). In contrast, in grasslands sites,

there were no lags, indicating that F0 was in phase with

GPP (Table 4). We analyzed the cross-correlations

between F0158C and h and found no lags (F0158C in phase

with h) at any study site (Table 4). The cross-

correlations for Ps with Ts, GPP, or h showed similar

seasonal lags as those found for F0 at all study sites.

We tested whether the relationship between F0, Ts,

and GPP showed lags based on changes in h. We found

that F0 and Ts at evergreen coniferous forests and

grassland sites were sensitive with negative lags (F0

peaked before Ts) when h was .0.3 m3/m3 (Fig. 2A). In

contrast, the effect of changes in h on lags between F0

FIG. 1. Across-sites relationships (A, B) between mean annual soil respiration (F0) and (A) mean annual soil temperature (Ts)
and (B) mean annual gross primary production (GPP); and (C,D) between soil CO2 production (Ps) and (C) mean annual Ts and
(D) mean annual GPP among vegetation types. Abbreviations are: ECF, evergreen coniferous forests; DF, deciduous forests; MF,
mixed forests; GRA, grasslands. See Table 1 for a summary of the study sites.
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and GPP was evident when h was .0.25 m3/m3 where

evergreen coniferous forests and grasslands showed

negative lags, deciduous forests showed positive lags,

and mixed forests were not sensitive to changes in h (Fig.

2B).

Regression trees

The regression trees for F0 revealed that GPP was the

most important parameter for separating high and low

values of F0 in deciduous and evergreen coniferous

forest sites with critical values of 3.2 and 7.1 g

C�m�2�d�1, respectively (Fig. 3A, B). We observed that

the second most important variable for deciduous

forests was h, but it was Ts for evergreen coniferous

forests. For grasslands, the most important parameter to

separate high and low values of F0 was h, with a critical

value of 0.2 m3/m3, while GPP was the secondary

variable (Fig. 3C). In contrast, soil temperature was the

most important parameter to separate high and low

values of F0 in mixed forests (Fig. 3D). In all cases,

TABLE 4. Seasonal cross-correlation analyses between daily means of soil respiration (F0) with daily means of gross primary
production (GPP) and daily means of soil temperature (Ts); or daily means of soil respiration at a base temperature reference of
158C (F158C) with daily means of soil water content (h).

Site ID by
vegetation type F0 with GPP Max. CCC F0 with Ts Max. CCC F158C with h Max. CCC

DF
Eden 88 0.40 �36 0.41 0 0.31
JP2 5 0.97 �25 0.87 0 0.48
TonU 21 0.85 �52 0.71 0 0.64

ECF
Blo �2 0.65 1 0.58 0 0.56
DF49 �15 0.94 1 0.94 0 0.89
HDF88 �5 0.92 2 0.89 0 0.69
Hyy �24 0.58 0 0.87 0 0.49

GRA
JRh 0 0.75 0 0.91 0 0.63
Sev 0 0.19 0 0.35 0 0.56
Stu 0 0.59 0 0.67 0 0.39
TonO 0 0.45 0 0.46 0 0.47

MF
JP1 5 0.34 0 0.91 0 0.39
JRw 29 0.77 �24 0.81 0 0.69

Notes: A negative lag (in days) means that the maximum cross-correlation coefficient (CCC) (P , 0.05) is achieved when F0 is
lagged x number of days before the second variable. A positive lag means that the maximum cross-correlation (P , 0.05) coefficient
is achieved when F0 is lagged x number of days after the second variable. A zero lag means that the maximum cross-correlation
coefficient is achieved when the time series are not lagged. The maximum cross-correlation coefficients for each site are with P ,
0.05. See Table 1 for explanations of study site codes.

FIG. 2. Effect of soil water content (h) on lags determined by cross-correlation analysis between (A) daily means of soil
respiration (F0) with daily means of soil temperature (Ts) and (B) daily means of F0 with gross primary production (GPP). A
negative lag means that the maximum cross-correlation coefficient (P , 0.05) is achieved when F0 is lagged x number of days before
the second variable. A positive lag means that the maximum cross-correlation (P , 0.05) coefficient is achieved when F0 is lagged x
number of days after the second variable. A zero lag means that the maximum cross-correlation coefficient is achieved when the
time series are not lagged. Abbreviations are: DF, deciduous forests; ECF, evergreen coniferous forests; GRA, grasslands; and MF,
mixed forests.
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higher values of all parameters (when important at each

node of the tree) discriminated in favor of higher values

of F0. The predicted values of the regression trees for

deciduous forests, evergreen coniferous forests, grass-

lands, and mixed forests explained 67%, 73%, 37%, and

80% of the variance of F0, respectively. The predicted

values of all study sites explained 94% of the variance of

all observations of daily F0 (Fig. 4A).

The regression trees for Ps revealed that GPP was the

most important variable for deciduous forests, with a

critical value of 4.4 g C�m�2�d�1, while h was a secondary

variable associated with higher values of Ps (Fig. 5A).

For evergreen coniferous forests, Ts was the most

important parameter to separate high and low values

of Ps (critical value of 108C), while GPP was a secondary

variable with critical values of 9.7 g C�m�2�d�1 for high
and 3.4 g C�m�2�d�1 for low values of Ps (Fig. 5B).

Similarly, Ts was the most important parameter to

separate values of Ps in mixed forests with a critical

value of 13.18C, while h was a secondary variable

FIG. 3. Regression trees for daily mean soil respiration (F0) values for: (A) deciduous forests, (B) evergreen coniferous forests,
(C) grasslands, and (D) mixed forests. Terminal points of the tree indicate mean F0 values of the cluster. Abbreviations are: GPP,
gross primary production (g C�m�2�d�1); Ts, soil temperature (8C); and SWC, soil water content (m3/m3).

FIG. 4. Daily values of (A) predicted soil respiration (F0) vs. observed F0 from regression trees and (B) predicted soil CO2

production (Ps) vs. observed Ps from regression trees. The dotted line represents an exact 1:1 relationship; the solid line shows the
linear regression of these data.
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associated with higher values of Ps (Fig. 5D). In
contrast, h was the most important variable in grass-
lands (critical value of 0.2 m3/m3), while GPP was a

secondary variable (Fig. 5C). In all cases higher values
of all parameters (when important at each node of the
tree) discriminated in favor of higher values of Ps. The

predicted values of the regression trees for deciduous
forests, evergreen coniferous forests, grasslands, and

mixed forests explained 47%, 33%, 32%, and 77% of the
variance of Ps, respectively. Consequently, the overall
predicted values of all study sites explained 43% of the

variance of all observations of daily Ps and underesti-
mate higher values of Ps (Fig. 4B).

DISCUSSION

Are there seasonal lags between F0 and Ts, h, or GPP,
and if so, do these lags differ among vegetation types?

Biological systems respond to present and past input
stimulus, thus processes regulating soil CO2 fluxes can be

studied as causal or non-anticipatory systems. Identifying
lags is important to the understanding of the manner in
which biophysical factors influence processes that regu-

late variation in terrestrial CO2 fluxes (e.g., Braswell et al.
1997). Here, we focus on seasonal lags (cross-correlation
analysis between two one-year-long time series), and our

results support the hypothesis that lags between F0 with
Ts and GPP provide insights into the role of plant
phenology and potentially about the timing of processes

associated with autotrophic and heterotrophic compo-
nents of soil respiration at the seasonal scale.
Seasonal lags between F0 and Ts cause seasonal

hysteresis effects that are evident in deciduous, evergreen

coniferous, and mixed forest. The amplitude of the

seasonal hysteresis and the lag between the time series

may depend on the different timing and contributions of

autotrophic and heterotrophic components of F0

(Drewitt et al. 2002, Vargas and Allen 2008c). For

example, seasonal soil CO2 fluxes at deciduous and

mixed forest sites responded after an increase in

photosynthesis (positive lags with GPP) but before a

peak in temperature (negative lags with Ts). Thus it is

likely that at these sites the seasonal pattern of F0 is

driven first by a substantial increase in autotrophic

activity (after inputs from GPP), followed by an increase

in heterotrophic activity (after inputs from GPP and an

increase in Ts). These results support previous observa-

tions in which photosynthesis (Baldocchi et al. 2006),

phenology (DeForest et al. 2006), and root–rhizomorph

dynamics (Burton et al. 1998, Vargas and Allen 2008c)

played a role in regulating seasonal soil CO2 fluxes at

deciduous and mixed forest sites.

For evergreen coniferous forests (located at high

altitudes or latitudes), F0 increases in phase with Ts but

before GPP (Table 4). At these sites, the seasonal pattern

of F0 may be driven first by a substantial increase in

heterotrophic activity (after an increase in Ts) followed

by an increase in autotrophic activity (after an increase in

Ts and inputs from GPP). Our results support previous

observations in which photosynthesis (Högberg et al.

2001) and temperature (Pumpanen et al. 2008) were

found to regulate soil CO2 fluxes in boreal forests.

For grasslands we observed that F0 was in phase with

seasonal variation in Ts and GPP because soil CO2 fluxes

respond rapidly to changes in photosynthesis and

FIG. 5. Regression trees for daily mean soil CO2 production (Ps) values for: (A) deciduous forests, (B) evergreen coniferous
forests, (C) grasslands, and (D) mixed forests. Terminal points of the tree indicate mean Ps values of the cluster. Abbreviations are:
GPP, gross primary production (g C�m�2�d�1); Ts, soil temperature (8C); and SWC, soil water content (m3/m3).
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assimilate supply in short-stature vegetation (Bahn et al.

2008, 2009). This apparent ectothermic pattern in
grasslands suggests that the seasonal pattern of F0 may

be regulated by a coupled seasonal timing of autotrophic

and heterotrophic activity. The seasonal lags presented in
this study must be compared using a larger network of

sites across multiple climatic zones and vegetation types,

and it is critical to partition the contribution to F0 by
autotrophic and heterotrophic activity using stable

isotopes and radiocarbon (Carbone et al. 2008, Bahn et
al. 2009) at multiple temporal scales. Only with direct

measurements can we clearly demonstrate the magnitude

of the contribution of each component of soil CO2 fluxes.
We have discussed seasonal lags between soil CO2

fluxes and Ts or GPP during the year, but the temporal

correlation between these variables could change at
shorter timescales, depending on the season and changes

in h. We found that higher h values (.0.3 m3/m3)
influence the intra-seasonal time lags between F0 and Ts

or GPP. These high values could be associated with

periods of snowmelt and precipitation events that
change the diffusivity of CO2 in the soil, increase

nutrient solution in the soil, and influence the photo-

synthesis rates at the ecosystem scale (Huxman et al.
2004, Xu and Baldocchi 2004). High water levels can

also constrain root and microbial metabolism by
reducing oxygen availability for respiration. To under-

stand water pulse dynamics it is important to under-

stand how changes in h influence soil CO2 fluxes and
their associated biophysical factors (Irvine and Law

2002, Jassal et al. 2008). Further research is needed to

identify lags at multiple temporal scales and to
understand the biophysical mechanisms that control

them in multiple vegetation types.

We believe it is important to include lags in empirical
and biogeochemical models to better represent the

variation of soil CO2 fluxes. A simple example could
be the modification of the empirical relationship

between Ts and F0 by including lags at the appropriate

temporal scale:

F0 ¼ B0 3 expðB1 3 TðkÞs Þ ð8Þ

where T
ðkÞ
s is the time series of Ts lagged by the

appropriate time step (e.g., lag in days for a seasonal

scale or lag in hours for a daily timescale). The inclusion
of lags in seasonal estimations of F0 based on Ts could

reduce potential errors associated with diel and seasonal
hysteresis effects (Vargas and Allen 2008c).

What are the relationships and interactions among F0, Ts,

h, and GPP within different vegetation types?

Our results showed that mean annual GPP was a good

predictor for mean annual F0 and Ps among our study
sites. This result supports previous observations in

which GPP overshadows Ts in determining soil and
ecosystem respiration in European forest (Janssens et al.

2001), grasslands (Bahn et al. 2008), and among

FLUXNET sites (Reichstein et al. 2003, Baldocchi et

al. 2006). The fact that there was a strong relationship

between F0 and GPP derived independently from remote

sensing provides motivation for further studies using

GPP derived from remote-sensing platforms.

It is important to recognize that MODIS GPP values

represent a different footprint than the site-specific

measurements of CO2 fluxes; therefore future studies

must require a dense spatial array of soil CO2

measurements to corroborate the results presented in

this study. In most cases F0 was calibrated spatially

using manual soil respiration chambers (see references in

Table 1), but may not fully represent the MODIS subset

in which GPP was estimated. This is a current challenge

as there is a trade-off between frequency of measure-

ments (e.g., daily) and spatial coverage (e.g., plot level

vs. landscape) that is limited by human resources,

electrical power, and budget. Despite these limitations

our results encourage the application of MODIS

products for the estimation of soil CO2 fluxes at large

geographical distances. Further studies should compile

larger data sets and test these observations among sites

with different soil, vegetation, and climatic conditions

that could help in future global estimates of soil CO2

fluxes.

Cross-correlation analysis showed distinct time lags

for each vegetation type, providing insights about the

timing of soil CO2 processes. We applied respective lags

in the time series, and regression tree analyses showed

that the dominant environmental factors influencing soil

CO2 fluxes differ between vegetation types. Using daily

values, we found that GPP was the dominant variable

explaining the variance in F0 for deciduous and

evergreen coniferous forests, but was the second most

important variable for grasslands. In contrast, Ts was

the main variable for mixed forests while h was the

dominant variable for grasslands as these are mainly

from arid or semiarid regions (but see Bahn et al. 2008).

It is known that in arid and Mediterranean ecosystems,

precipitation pulses dictate microbial dynamics influ-

encing CO2 fluxes (Ogle and Reynolds 2004, Xu et al.

2004, Kurc and Small 2007, Collins et al. 2008).

However, for the mesic grassland site (Stu) GPP was

the main regulator of soil CO2 fluxes (data not shown),

supporting the importance of this variable in temperate

mesic grasslands (Bahn et al. 2008). From regression

trees, we could generalize that increased GPP is linked

with higher soil CO2 fluxes, and when Ts and h are

relevant, they also promote higher values of F0 and Ps

among all vegetation types.

Although we found similar patterns and relationships

that regulate F0 and Ps, a low percentage of the variance

(43%) in Ps was explained by regression trees in

comparison with the 90% explained for F0. We present

two complementary explanations: (1) parameters other

than Ts, GPP, and h are needed to explain the variance

in Ps, and (2) there is a larger mismatch between GPP

and Ps because it is difficult to spatially average

biophysical processes that act deeper in the soil.
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Because Ps is a measurement of biological activity, we

postulate that other unmeasured factors, likely of

biological origin, may not be fully explained by GPP,

Ts, and h alone (Kuzyakov 2006). Previous studies have

shown that fine roots and mycorrhizal rhizomorph

dynamics (Misson et al. 2006, Heinemeyer et al. 2007,

Gaumont-Guay et al. 2008, Vargas and Allen 2008c)

and substrate supply and nutrient availability (Schimel

et al. 1994, Ruess et al. 2003) are other biological drivers

that influence Ps. To date we do not have a common

biological variable (other than GPP) among sites (e.g.,

root production, microbial biomass) that could allow us

to test this hypothesis. It is a current challenge to

spatially average the biophysical processes that interact

deeper in the soil profile, but this information is critical

for improving climate models as these processes could

influence the regional climate (Lee et al. 2005).

Limitations and future considerations

To better understand the drivers of soil CO2 fluxes, it

is necessary to study the distribution of Ps in the soil

profile. Although we assumed a constant Ps with soil

depth and analyzed Ps values calculated for a shallow

depth with higher root density zones, future studies

should determine the depth of maximum CO2 produc-

tion. This is why it is critical to look deeper into the soil

to understand the biophysical drivers of Ps suggested in

this study. Multiple CO2 sensors in the soil profile allow

the calculation of Ps at multiple depths to understand

the different contributions over the soil profile

(Hashimoto and Suzuki 2002, Hirano et al. 2003,

Jassal et al. 2005, Davidson et al. 2006). High spatial

sampling resolution is important to understand vertical

and horizontal variation in F0 and Ps (Vargas and Allen

2008a, c), especially in complex terrains (Riveros-Iregui

et al. 2008). Furthermore, measurement points should

follow indicators of biological activity (e.g., maximum

root biomass or maximum rooting depth) or biophysical

transitions in the soil (e.g., soil horizons) associated with

Ts and h measurements to better interpret Ps at

individual sites or across sites (Pumpanen et al. 2008).

We recognize that the flux-gradient method is not

always the most appropriate method to estimate F0 in

all conditions, and more studies are needed to compare

methods and calculate Ps at multiple depths. However,

values of F0 obtained using different methods (auto-

chambers vs. flux gradient method) have been shown to

yield similar results within the sites included in this study

(Tang et al. 2003, 2005b, Liang et al. 2004, Jassal et al.

2005, Baldocchi et al. 2006, Pumpanen et al. 2008,

Vargas and Allen 2008a, b, c).

Finally, studies that incorporate complementary

measurements are needed to understand the controls

of Ps on F0. Examples are the combination of soil CO2

concentration measurements with soil respiration au-

tochambers (Jassal et al. 2005, 2008, Pihlatie et al. 2007),

eddy covariance towers (Baldocchi et al. 2006), mini-

rhizotron measurements (Misson et al. 2006, Vargas and

Allen 2008b, c), or the possibility of incorporating

analyses of natural abundance of radiocarbon

(Carbone et al. 2008) and stable isotopes (Bahn et al.

2009) in soil CO2 fluxes. With increasing interest in

wireless networks (Allen et al. 2007, Porter et al. 2009)

and the emergence of long-term automated soil sensor

networks as a result of continental monitoring programs

(e.g., FLUXNET, NEON, ICOS), complex spectral

analysis of continuous biometeorological measurements

can be applied (Vargas et al., in press). We expect that

these regional networks and future analyses will provide

critical data and input parameters for testing process-

based models among multiple vegetation types.
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