Sediments in Sea Ice Drive the Canada Basin Surface Mn Maximum: Insights From an Arctic Mn Ocean Model

B. Rogalla1, S. E. Allen1, M. Colomb01, P. G. Myers1, and K. J. Orians1

1Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada,
2Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA,
3Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada

Abstract Biogeochemical cycles in the Arctic Ocean are sensitive to the transport of materials from continental shelves into central basins by sea ice. However, it is difficult to assess the net effect of this supply mechanism due to the spatial heterogeneity of sea ice extent. Manganese (Mn) is a micronutrient and tracer which integrates source fluctuations in space and time while retaining seasonal variability. The Arctic Ocean surface Mn maximum is attributed to freshwater, but studies struggle to distinguish sea ice and river contributions. Informed by observations from 2009 IPY and 2015 Canadian GEOTRACES cruises, we developed a three-dimensional dissolved Mn model within a 1/12° coupled ocean-ice model centered on the Canada Basin and the Canadian Arctic Archipelago (CAA). Simulations from 2002 to 2019 indicate that annually, 87%–93% of Mn contributed to the Canada Basin upper ocean is released by sea ice, while rivers, although locally significant, contribute only 2.2%–8.5%. Downstream, sea ice provides 34% of Mn transported from Parry Channel into Baffin Bay. While rivers are often considered the main source of Mn, our findings suggest that in the Canada Basin they are less important than sea ice. However, within the shelf-dominated CAA, both rivers and sediment resuspension are important. Climate-induced disruption of the transpolar drift can reduce the Canada Basin Mn maximum and supply downstream. Other micronutrients found in sediments, such as Fe, may be similarly affected. These results highlight the vulnerability of the biogeochemical supply mechanisms in the Arctic Ocean and the subpolar seas to climatic changes.

Plain Language Summary Autumn storms on the Siberian side of the Arctic Ocean churn up sediment that freezes into sea ice. The prevailing ocean currents and winds push this sea ice across the Arctic Ocean toward the Canada Basin, where it melts and releases the sediment into the ocean. Sediment contains manganese and other nutrient elements that help support plankton and life. Using our manganese ocean model, 87%–93% of Mn in the Canada Basin comes from “dirty” sea ice from 2002 to 2019, while rivers supply 2.2%–8.5%. As a result of climate change, less dirty sea ice may make it across the Arctic Ocean, which could reduce the supply system of manganese and other similar micronutrients. This change also has potential impacts downstream: Water from the Canada Basin travels through the shallow Canadian Arctic Archipelago into Baffin Bay and eventually into the North Atlantic. We found that about 34% of Mn transported along this route comes from “dirty” sea ice. In the Canadian Arctic Archipelago, other sources contribute as well: tides churn up sediments from the ocean floor and many rivers flow into the channels. Our study highlights ways in which climate change may impact the nutrient supply systems in the Arctic Ocean.

1. Introduction

As the sea ice regime in the Arctic Ocean transitions from multiyear ice to predominantly first-year ice with overall reductions in sea ice extent, thickness and altered drift patterns (Kwok et al., 2013; Serrein et al., 2011; Stroeve et al., 2012; Stroeve & Notz, 2018), biogeochemical cycles, and primary productivity are impacted through changes to the sea ice supply mechanism. The Arctic Ocean continental shelves connect land and ocean through the transfer of river runoff and sea ice from near-shore regions to the central basins (Charette et al., 2016). Reductions in sea ice export from the shelves weaken the long-range transport of ice-rafted matter (Krumpen et al., 2019)—including sediments (Darby et al., 2011; Dethleff et al., 2000), nutrients and trace metals (Measures, 1999; Tovar-Sánchez et al., 2010), pollutants (Peeken et al., 2018; Pfirman et al., 1995), and climate-relevant gases (Damm et al., 2018)—to the surface ocean in regions far away from boundary sources. It is challenging to quantify the contribution of materials supplied by sea ice with observations alone due to the high spatial and temporal variability in the amount of sediment in sea ice and because it is difficult to distinguish...
it from additional contributions to the surface ocean such as river runoff. However, it is clear that changes to the physical processes in the Arctic Ocean will have impacts on the biogeochemical cycles and primary productivity of the basins themselves, as well as downstream in subpolar seas (Drinkwater & Harding, 2001; Greene & Pershing, 2007).

Continental shelves cover half of the area of the Arctic Ocean (Jakobsson, 2002) and their shallow depths facilitate the incorporation of suspended matter into sea ice as it forms (Kempema et al., 1989). The narrow and deeper North American shelves are not as important for basin-wide sea ice sediment transport as the wide Siberian shelves (Eicken et al., 2005). In the Siberian shelf regions, fast ice builds up near shore in the fall, coinciding with storm-related resuspension events, forming sediment-rich sea ice (Nürnberg et al., 1994). The transpolar drift transports this sea ice, as well as some ice from the Chukchi Sea, toward the North Pole and the anticyclonic Beaufort Gyre redirects a portion into the Canada Basin (T. Martin & Gerdes, 2007). This passage takes several years, during which the ice undergoes cycles of melting, freezing, and deformation. The materials released by melt alter the geochemical signature of the underlying water (Pfirman et al., 1995). Several studies indicate an ongoing increase in sea ice exchange from the shelf to the basins caused by faster ice drift speeds (Kipp et al., 2018; Kwok et al., 2013; Newton et al., 2017; Spreen et al., 2011); on the contrary, there has also been a disruption of long-range sea ice transport due to the melt of first-year ice before it is incorporated into the transpolar drift (Krumpen et al., 2019). Reductions in long-range sea ice transport can impact the supply of freshwater and nutrients to the surface ocean at the end of the transpolar drift, namely Fram Strait, and indirectly the Canada Basin, the Canadian Arctic Archipelago (CAA), and the subpolar North Atlantic. In order to establish the importance of sediment from sea ice for biogeochemical cycles in the indirectly impacted regions of the Canada Basin and the Canadian Arctic Archipelago, we developed a model of dissolved manganese (Mn).

Mn is a reactive trace element and an important micronutrient which shares many sources with iron (Fe) in the Arctic Ocean (Brand et al., 1983; Bruland et al., 1991; Jensen et al., 2020). Mn has a scavenged-type profile with high concentrations near sources and low background concentrations. This contrast makes it a convenient source tracer. Over the Arctic Ocean shelves, sediment resuspension contributes Mn to the lower water column (Colombo et al., 2020; Evans & Nishioka, 2018). Pacific water from the Bering Strait and Chukchi Sea is a source of Mn to the halocline of the Arctic Ocean (Colombo et al., 2020; Jensen et al., 2020). Mn is typically highest at the surface where atmospheric deposition, river runoff and ice melt contribute, and where photoreduction of Mn is enhanced and bacterially mediated Mn oxidation is inhibited (Sunda & Huntsman, 1994). In the Arctic Ocean, this surface maximum is attributed to freshwater sources (Campbell & Yeats, 1982; Cid et al., 2012; Colombo et al., 2020; Kondo et al., 2016; Middag, De Baar, Laan, & Klunder, 2011; Yeats & Westerlund, 1991). Observational studies have identified the origin of this freshwater as river discharge (Campbell & Yeats, 1982; Evans & Nishioka, 2018; Yeats & Westerlund, 1991), sea ice meltwater (Measures, 1999; S. Wang et al., 2014, for Fe), or a combination of both (Cid et al., 2012; Colombo et al., 2020; Kondo et al., 2016; Middag, De Baar, Laan, & Klunder, 2011). Mn concentrations in rivers are significantly higher than in the ocean (Colombo et al., 2019). Similarly, trace metals and nutrients in sea ice occur in concentrations in excess of those in the ocean (Aguilar-Islas et al., 2008; Campbell & Yeats, 1982; Evans & Nishioka, 2018; Granskog et al., 2003; Hölemann et al., 1999; Kondo et al., 2016; Krachler et al., 2005; Tovar-Sánchez et al., 2010). The relative importance of river runoff and sea ice depends in part on the distance from the source and internal cycling within the ocean (Fichot et al., 2013). The narrow and shallow systems of channels of the CAA are in close contact with the land-ocean interface and are more directly impacted by boundary processes such as river discharge and sedimentary inputs (Colombo et al., 2021). Comparatively, the Canada Basin is distant from land, and we expect the prevalence of boundary sources such as river discharge and sedimentary inputs to be diminished. We will investigate the hypothesis that sediments transported by sea ice are an important source of Mn in the Canada Basin, as suggested for reactive trace metals by Measures (1999).

In order to distinguish the individual importance of external Mn sources within the Canada Basin and the CAA, model studies are needed. Past studies have used tracers such as terrestrial dissolved organic matter to trace river runoff on the scale of months to years (Fichot et al., 2013; Mann et al., 2016) and the oxygen isotope ratio (Yamamoto-Kawai et al., 2009) to distinguish the meteoric and sea ice melt contributions to freshwater in the Canada Basin. Mn is an interesting complementary tracer: It can trace both the impact of river runoff and sediments in sea ice and incorporates information about chemical transformation such as redox conditions and removal over time, thereby helping inform freshwater influence on biogeochemical cycling. Mn is also an
essential micronutrient and integrates processes that fluctuate on short time scales. As a result, Mn helps address one of the main limitations of the study of sediment entrainment and export events by sea ice that they are episodic and localized in nature (Eicken et al., 2005). Similarly, while sediment resuspension occurs intermittently, Mn integrates the effect of this component on the lower water column. After establishing the contributions of the Mn sources, we use Mn as a tool to study the general role of sea ice transport for biogeochemical cycles.

In this paper, we present a model of Mn in the Canadian Arctic Archipelago and the Canada Basin, informed by in situ observations collected during the 2009 IPY GEOTRACES cruise (Sim, 2018) and the 2015 Canadian GEOTRACES cruises (Colombo et al., 2020). Our work builds on the comprehensive first global model of Mn in the ocean (Van Hulten et al., 2017) and previous smaller scale models of Mn in the North Pacific Ocean (Johnson et al., 1996) and near hydrothermal vents (Lavelle et al., 1992). We incorporate new parameterizations for sediment resuspension, release of shelf sediments in sea ice, and fluvial contributions to capture the drivers of Mn distributions in the Canadian Arctic. With this model, we show that the long-range transport of sediments by sea ice from the Siberian shelves drives the surface Mn maximum in the Canada Basin while rivers are important in coastal regions. Using these results, we discuss implications of future sea ice melt on Mn and Fe nutrient budgets in the Canada Basin and downstream in the Canadian Arctic Archipelago and Baffin Bay.

2. Methods

2.1. Coupled Ocean-Ice Model

For our simulations, we use ocean and ice dynamics calculated by the Arctic and Northern Hemispheric Atlantic (ANHA12) configuration (Hu et al., 2018) of the Nucleus for European Modeling of the Ocean (NEMO) version 3.4 (Madec, 2008). The ANHA12 configuration has a nominal horizontal resolution of 1/12° that resolves freshwater fluxes associated with coastal currents in the CAA and eddies (Bacon et al., 2014; Chelton et al., 1998). The position of the grid's artificial pole in Northern Canada increases the resolution in the CAA to about 2–3 km (Figure 1). In the vertical, there are 50 depth levels ranging from 1 m thickness at the surface to 454 m near the bottom. The bottom bathymetry is represented using partial steps.

The ANHA12 domain has two open boundaries: One in Bering Strait and the other at 20°S in the Atlantic Ocean. These boundaries are forced with Global Ocean Reanalyses and Simulations data (Masina et al., 2017). The ocean
surface is forced with hourly atmospheric data from the Canadian Meteorological Centre's global deterministic prediction system (Smith et al., 2014) and the rivers are forced with monthly runoff climatology with enhanced Greenland melt runoff (Bamber et al., 2012; Dai et al., 2009). The river forcing from 2010 is repeated for the following years (Hu et al., 2019).

The sea ice in ANHA12 is represented using the dynamic and thermodynamic Louvain-la-Neuve (LIM2) sea ice model with an elastic-viscous-plastic ice rheology (Bouillon et al., 2009; Fichefet & Maqueda, 1997). An evaluation of LIM2 in the ANHA12 configuration is provided by Hu et al. (2018). The general spatial distribution of ice thickness within the Canada Basin and the CAA is captured well. However, sea ice concentration and thickness are overestimated in the Canada Basin, likely because of underestimated melt (Grivault et al., 2018; Hu et al., 2019). In the northern CAA, the model has very thick sea ice (>4 m), the central CAA has intermediate ice thickness (2.5–3 m), and there is thin (<2 m) ice in the eastern and southern channels of the CAA. The ANHA12 simulations are limited by the lack of a land-fast ice parameterization, resulting in ice velocities that are higher than observed in Parry Channel, impacting the winter transport (Grivault et al., 2018). In addition, tides are not included and as a result, the polynyas that form due to tidally enhanced mixing are not well reproduced (Hughes et al., 2018).

The advection and diffusion of tracers are calculated within NEMO by the TOP engine (Gent et al., 1995; Lévy et al., 2001). Tracer advection is calculated with the Total Variance Dissipation (TVD) scheme (Zalesak, 1979) and we use the Flow Relaxation Scheme (FRS) for the tracer boundary conditions. The vertical diffusion of tracers is calculated from the Turbulent Kinetic Energy closure scheme within ANHA12 and the horizontal eddy diffusivity parameter is set to 50.0 m² s⁻¹.

2.2. Model of Mn in the Canadian Arctic

The Mn model runs offline in NEMO version 3.6 using five day averaged dynamics fields from the ANHA12 reference run from January 2002 to December 2019 (Hu et al., 2018). The Mn model consists of two main sets of computations: The advection and diffusion of tracers calculated by the NEMO-TOP engine (Gent et al., 1995; Lévy et al., 2001), and the source and sink contributions. The source and sink parameterizations were developed guided by observations from the 2015 Canadian GEOTRACES cruises (Colombo et al., 2020) and inspired by the first global model of Mn (Van Hulten et al., 2017). In order to reduce the computational cost, we calculate the model on a subdomain of ANHA12, centered on the CAA (Figure 1). Note that since we run offline, the physics originates from the full domain.

The known sources and sinks of Mn in the ocean are rivers, hydrothermal vents, sediment diffusion, sediment resuspension, reversible scavenging, sinking, uptake and remineralization, atmospheric dust deposition, and flux from ice (Balzer, 1982; Evans & Nishioka, 2018; Klinkhammer & Bender, 1980; Middag, De Baar, Laan, & Klunder, 2011). From this list, we incorporate the processes that are important for dissolved Mn in the Arctic (summarized in Figure 2 and Equations 1 and 2). We directly model dissolved Mn(II) and oxidized Mn(IV) (dMn and oMn, respectively) for reversible scavenging (similar to Van Hulten et al., 2017, Equation 2). We do not directly trace lithogenic particles containing Mn, that is, particle-bound Mn (pMn), but we incorporate their indirect effect through dissolution. We did not incorporate hydrothermal vents as a source of Mn in the Arctic, since the influence of the Gakkel Ridge is restricted to Nansen and Amundsen Basins due to scavenging nearby the source (Lavelle et al., 1992; Middag, De Baar, Laan, & Klunder, 2011). We also do not include sediment diffusion (reductive dissolution) because observations have indicated that these processes are not significant for Mn in the CAA (Colombo et al., 2020). The Mn model equations are as follows:

\[
\frac{\partial dMn}{\partial t} = S_{river} + S_{sediment} + S_{atm} + S_{ice} + S_{sed ice} + S_{bio} + R_{scav} + \text{advection + diffusion} \tag{1}
\]

\[
\frac{\partial oMn}{\partial t} = -R_{scav} - R_{sink} + \text{advection + diffusion} \tag{2}
\]

which include the contribution of rivers (\(S_{river}\)), sediment resuspension or nonreductive dissolution (\(S_{sediment}\)), atmospheric dust deposition (\(S_{atm}\)), dust flux from ice (\(S_{ice}\)), sediment released by ice (\(S_{sed ice}\)), biological uptake and remineralization (\(S_{bio}\)), the reversible scavenging terms (\(R_{scav}\)), and sinking (\(R_{sink}\)). The details of the parameterizations are described in the following sections and the parameter values used for the runs are listed in Table 1.
The model was initialized with output from the global Mn model (Van Hulten et al., 2017) and concentrations are held constant at the subdomain boundaries. At these boundaries, the ratio of dissolved to oxidized Mn from the global model was not representative (oxidized Mn was too low) and resulted in unusual scavenging behavior. Instead, we used dissolved and oxidized Mn concentrations in a band just inside the domain (where the model had established normal scavenging behavior) from a test model run at the end of spin-up for the boundary conditions. We conducted sensitivity experiments of the western and northern boundary conditions with enhanced concentrations to delineate the influence of Pacific water and the transpolar drift on the Canada Basin (Text S1 and Figures S1–S4 in Supporting Information).

2.2.1. Riverine Source

River discharge contributes Mn to the shelf seas and into the Arctic Ocean (Middag, De Baar, Laan, Cai, et al., 2011). Dissolved Mn is contributed directly and indirectly through the dissolution from particle-bound Mn.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>Fractional solubility of Mn at 4°C</td>
<td>0.65</td>
<td>Fishwick et al. (2018)</td>
</tr>
<tr>
<td>$f_{\text{Mn, crust}}$</td>
<td>Mn fraction in Earth's crust</td>
<td>527 ppm</td>
<td>Wedepohl (1995)</td>
</tr>
<tr>
<td>$f_{\text{Mn, sed}}$</td>
<td>Mn fraction in marine sediment</td>
<td>270 ppm</td>
<td>Macdonald and Gobeil (2012)</td>
</tr>
<tr>
<td>m</td>
<td>Molar mass of Mn</td>
<td>54.938 g mol$^{-1}$</td>
<td>—</td>
</tr>
<tr>
<td>δ_d</td>
<td>Reduction and desorption rate</td>
<td>$4.7 \cdot 10^{-7}$ s$^{-1}$</td>
<td>Bruland et al. (1994)</td>
</tr>
<tr>
<td>k_p</td>
<td>Oxidation and adsorption rate</td>
<td>$7.0 \cdot 10^{-7}$ s$^{-1}$</td>
<td>This studya</td>
</tr>
<tr>
<td>s_{ox}</td>
<td>Sinking rate</td>
<td>0.6 m day$^{-1}$</td>
<td>Roy-Barman (2009)/This study</td>
</tr>
<tr>
<td>C</td>
<td>Tidal erosion tuning constant</td>
<td>$2.1 \cdot 10^{-6}$</td>
<td>This study</td>
</tr>
<tr>
<td>γ</td>
<td>Solubility tuning constant</td>
<td>0.065</td>
<td>This study</td>
</tr>
<tr>
<td>R / SPM</td>
<td>River characteristic content</td>
<td>—</td>
<td>This studya</td>
</tr>
</tbody>
</table>

aUsing data from Colombo et al. (2020); Colombo et al. (2022). bUsing data from Colombo et al. (2019); Brown et al. (2020).
The contribution of riverine Mn depends on the river discharge, Q, and the concentration in the rivers. These concentrations vary based on properties of the river’s catchment basin: Glacial rivers are strongly enriched in dissolved Mn, continental rivers are somewhat enriched, and in all other rivers, Mn is not significantly enriched (Colombo et al., 2019). At each time step, the rivers contribute dissolved Mn as given in the below equation:

$$S_{river} = \frac{Q}{\rho_0 \Delta z_{surface}} R_{class} + \beta \frac{Q}{\rho_0 \Delta z_{surface}} \frac{S\text{PM}_\text{class} \cdot \alpha_0 \cdot f_{Mn, crust}}{m}$$

where ρ_0 is the density of the river water, $\Delta z_{surface}$ is the surface grid box thickness, β is a factor which ranges from 0 to 1 in our experiments (not tuned, but tested in the upper bound river experiment), $f_{Mn, crust}$ is the crustal abundance of Mn, m is the molar mass of Mn, and α_0 is the fractional solubility of Mn. We use an average value for the fractional solubility (65%) measured in seawater at 4°C, since this lower temperature better reflects the CAA (Fishwick et al., 2018). This fractional solubility falls within the range measured in samples across the world (Fishwick et al., 2018). Each river is assigned a class with an associated characteristic trace metal concentration, R_{class}, and suspended particulate matter content, $S\text{PM}_\text{class}$, based on catchment basin properties: Glacial, continental, and other (Figure 3 and Table 1). The Mn concentrations and SPM content associated with the classes are determined from rivers sampled in the CAA (Brown et al., 2020; Colombo et al., 2019).

2.2.2. Atmospheric Aerosol Flux and Release From Sea Ice

Atmospheric aerosols contribute Mn to the ocean through direct deposition to surface waters, Φ_{atm}, or through the deposition onto sea ice and the subsequent release during melt, Φ_{ice}. We parameterized these particulate contributions to dMn as follows:

$$S_{atm or ice} = \frac{\alpha_0 \cdot f_{Mn, crust}}{m \cdot \Delta z_{surface}} \cdot \Phi_{atm or ice}$$

The atmospheric and sea ice flux terms are derived from monthly Community Earth System Model (CESM) results. The combined monthly dry and wet atmospheric deposition fluxes originate from historical (1920–2005) and future (2006–2080) runs of the Community Atmosphere Model with Chemistry (CAM-Chem) downloaded from the Climate Data Gateway (CESM1 CAM5 BGC Large Ensemble Atmosphere Post Processed Data; Tilmes et al., 2016). We estimate tracer fluxes from ice using the monthly Community Ice CodE ensemble results (CICE; Fishwick et al., 2018)
Holland et al., 2012; Kay et al., 2015). These ensemble run sets have a horizontal atmospheric resolution of 0.9 × 2.5° and ocean/ice resolution of 1.6 × 2.5° which we linearly interpolated to the ANHA12 grid. We do not tune any of the parameters in this process.

2.2.3. Sediment Resuspension Over the Continental Shelf

Dissolved Mn increases near the ocean floor in the Canadian Arctic by sediment resuspension (non-reductive dissolution; Colombo et al., 2020). While reductive dissolution is important over the Chukchi Shelf regions (Vieira et al., 2019), we did not include sediment diffusion as reducing conditions in the sediments are not prevalent in the CAA (Colombo et al., 2021; Lehmann et al., 2022). The northern and western model boundary conditions from the global Mn model (Van Hulten et al., 2017) may account for some inflow of reduced Mn from the Chukchi shelves, as the global model includes sediment diffusion. Sediment resuspension occurs intermittently; Mn integrates the resuspension events and thereby provides a cumulative view of its prevalence. We incorporated the contribution from sediment resuspension to dMn as a continuous process:

\[S_{\text{sediment}} = \Phi_{\text{erosion}} \cdot \frac{\alpha \cdot f_{Mn\, \text{sed}}}{m \cdot \Delta z_{\text{bottom}}} \]

where \(f_{Mn\, \text{sed}} \) is the fraction of Mn in the particle phase in marine sediments. This fraction is likely to be lower than measured in the continental crust (Wedepohl, 1995), since it has undergone some amount of chemical transformation. We used the Mn fraction estimated by Macdonald and Gobeil (2012) from sediments in cores on the shelf and slopes surrounding the Canada Basin. In Equation 5, \(\Phi_{\text{erosion}} \) is the “erosion ability” (see Figure S5 in Supporting Information S1 for the forcing field). This term incorporates the spatial differences in dynamics within the CAA. In the region west of Barrow Sill, the system has lower mixing rates (Hughes et al., 2018) and tidal speeds (Epstein, 2018) than the region east of Barrow Sill and around the central sill area. These differences impact the sediment resuspension rates, apparent in the much stronger near-bottom increases of observed dMn in the eastern CAA (Colombo et al., 2020). We estimate the ability of sediment to be eroded with the barotropic tidal speed, \(U_{\text{tidal}} \), and a tuning constant, \(C \):

\[\Phi_{\text{erosion}} = C \cdot U_{\text{tidal}}^2 \]

The barotropic tidal speeds are from the MOG2D-G model (Carrère & Lyard, 2003) and are significantly higher in the eastern CAA, compared to the western CAA (Epstein, 2018). Locations where the tidal speeds are less than 1 cm s\(^{-1}\) are masked, since they are below a critical threshold for motion for particles greater than 0.1 mm, that is, sand. In areas where resuspension occurs frequently, the easily accessible Mn on particles has already been removed, resulting in a lower solubility. We reduce the fractional solubility in Equation 5 at high tidal speeds according to the following equation:

\[\alpha = \alpha_0 \cdot \left(1 - e^{-U_{\text{tidal}}(t)} \right) / U_{\text{tidal}}^2 \]

where \(\gamma \) is a tuning parameter. At small tidal speeds, Equation 7 approaches \(\alpha_0 \) while at tidal speeds greater than 0.1 m s\(^{-1}\), fractional solubility decreases and the overall resuspension rate approaches a constant \(\alpha_0 \gamma C \) (Figure S6 in Supporting Information S1). The tuning parameters were estimated based on model behavior in several tuning runs (see Section 2.3).

2.2.4. Sediment Entrained in Sea Ice and Subsequent Melt

Sediment entrained in sea ice has been identified as an important source of reactive trace metals such as aluminum and iron in the ocean, and thus may also be important for Mn (Measures, 1999). In order to parameterize this contribution to dMn, we couple the Mn contained in sediments in sea ice and the sea ice melt rate, \(I_{\text{melt}} \):

\[S_{\text{sed \, ice}} = \frac{a_0 \cdot f_{Mn\, \text{sed}}}{m \cdot \Delta z_{\text{num \, face}}} \cdot S_p \cdot I_{\text{melt}} \]

where \(S_p \) is the sediment content in sea ice at each grid point. The sediment content is spatially variable and depends on the amount of sediment that was incorporated during ice formation on the shelves and on sea ice transport. This parameterization assumes that Mn released from sea ice originates from shelf sediments in the
particulate form. Once released from the sea ice, Mn particles undergo dissolution and subsequently undergo redox cycling and sinking, which are modeled herein. Dissolved Mn drains from the ice matrix early in the melt season alongside sea ice brine (Domena, 2017); dMn is likely released from the ice in the first melt season and not substantially resupplied during subsequent winters (Evans & Nishioka, 2019). Much of the ice in our domain is multiyear ice which we expect to have low dMn; hence, we did not consider the dMn in sea ice brine in the model. Through particle tracking experiments with Ocean Parcels (Lange & Van Sebille, 2017), we estimated the contribution of sea ice formed over the Siberian shelves during the stormy fall months (September–December) to the ice in the Canada Basin (Figure 4). We released parcels every month over the course of a year and traced them backward for 3 years (the average sea ice age in the Canada Basin and the northwestern CAA based on satellite information). Almost 40% of the sea ice tracks in the northwestern CAA and Canada Basin region originated from the Siberian shelves via the transpolar drift during the fall months, when strong sediment resuspension events coincide with sea ice formation. The rest of the tracks transit this region during other times of year, circulate within the central Canada Basin during the 3 years of tracking, or originate from the outer Siberian shelf or Chukchi Sea. The results of the particle tracking experiments were interpolated and smoothed to create a forcing field that incorporates the spatial variation in sediment content in sea ice (Figure S7 in Supporting Information S1). In addition, we assumed a low background value of shelf sediments in sea ice in the CAA. We multiply this forcing field by a tuned constant, 0.85 kg m$^{-3}$, which reflects the sediment content of the ice if it were fully formed over the Siberian shelf in the fall, that is, the proportion of Siberian tracks was one.

2.2.5. Uptake and Remineralization

Dissolved Mn is taken up by phytoplankton in the euphotic zone and is subsequently remineralized below the euphotic zone. We can quantify this particulate contribution to dMn by pairing the addition and removal of Mn to the uptake and remineralization of nitrate:

$$S_{\text{bio}} = R_{Mn,N} \cdot \Delta N$$ (9)
where \(R_{\text{ext}} \) is the extended Redfield ratio for Mn to nitrogen based on observations in the North Atlantic (23,000 N: 1.6 Mn; Kuss & Kremling, 1999), and \(\Delta N \) is the month-to-month change in nitrate concentration during the summer months (April–August) from 2002 to 2015 derived from the Canadian Ocean Ecosystem Model (CanOE; Hayashida et al., 2019). The North Atlantic nutrient balance is strongly influenced by Arctic Ocean outflow (Yamamoto-Kawai et al., 2006) and may thus be representative of the CAA. The Mn:N ratio could be higher in the Arctic Ocean as a result of the abundance of Mn sources in the Arctic, in which case, we slightly underestimate uptake and remineralization. We assume that the month-to-month change in nitrate is zero during seasons with low biological activity to avoid confusing the replenishment of nitrate via mixing with remineralization at the surface. We did not tune the uptake and remineralization.

2.2.6. Reversible Scavenging and Sinking

Dissolved Mn oxidizes forming larger aggregates and adsorbs to particle surfaces. \(\Delta \text{Mn} \) is regenerated by the reduction of oxidized Mn and desorption from particles. Since, we do not directly model particle-bound Mn but rather incorporate its effect on \(\Delta \text{Mn} \) through dissolution from the source components, we calculate the reversible scavenging based on the dissolved and oxidized Mn concentrations (Van Hulten et al., 2017):

\[
R_{\text{scav}} = -k_p \cdot [\text{D Mn}] + k_d \cdot [\text{O Mn}]
\]

where \(k_p \) is the adsorption and oxidation rate, and \(k_d \) is the desorption and reduction rate (see Text S2 in Supporting Information S1 for the full derivation). The \(R_{\text{scav}} \) term appears with opposing signs in the \(\text{D Mn} \) and \(\text{O Mn} \) equations (Equations 1 and 2). We estimate the rate constant \(k_p \) from observations of dissolved and particulate Mn in the Canadian Arctic (Colombo et al., 2020, 2022). As this estimate is based on field data, the rate intrinsically incorporates the impact of abiotic and microbially enhanced oxidation. Assuming steady state, the ratio of the scavenging rates is equal to the ratio of dissolved to particulate Mn concentrations. This assumption reduces the available observations to those far away from sources and sinks, that is, deep stations in Baffin Bay and the Canada Basin (Figure S8 in Supporting Information S1). The ratio of scavenging rates, \(k_p/k_d \), is estimated as \(1.47 \pm 0.25 \) and with a \(k_p \) of \(4.7 \times 10^{-7} \text{ s}^{-1} \) (Bruland et al., 1994). \(k_d \) is estimated as \(7.0 \times 10^{-7} \text{ s}^{-1} \) (Figure S9 in Supporting Information S1). The reduction rate, \(k_d \), increases from the base rate up to \(2.7 \times 10^{-5} \text{ s}^{-1} \) in the eutrophic zone (photo-enhanced reduction; Sunda & Huntsman, 1994), proportional to the solar flux that penetrates into the ocean at the surface, limited by the ice cover (from ANHA12). We estimate the euphotic zone depth as 70 m in the Canada Basin with a gradual transition to 50 m in the CAA (Figure S10 in Supporting Information S1) based on estimates by Bhatia et al. (2021) and Laney et al. (2017); the euphotic zone depth estimate does not account for sea ice cover, which may lead to an overestimation of the depth over which enhanced \(k_p \) is applied. The scavenging rates in the model do not depend on the dissolved oxygen concentration since Arctic waters are generally well oxygenated.

The oxidized Mn aggregates sink, \(R_{\text{sink}} \), and is removed through burial as given in Van Hulten et al. (2017):

\[
R_{\text{sink}} = s_{\text{sink}} \frac{\partial [\text{O Mn}]}{\partial z}
\]

where \(s_{\text{sink}} \) is the sinking rate. The sinking rate was based on the estimate by Roy-Barman (2009) of 0.4 m d\(^{-1}\) in the interior of the Arctic Ocean and then increased to 0.6 m d\(^{-1}\) based on an evaluation of modeled background oMn concentrations in the Canada Basin far away from sources and sinks.

2.3. Tuning

Of the parameters in our model (Table 1), we tuned the oMn sinking rate, sediment resuspension rate, sediment solubility parameter, and the sediment content in sea ice (in that order). Below, we describe our choice of criteria and approaches for tuning these parameters and compare the parameter values with observations.

The sinking rate sets the background oMn (and through reduction, \(\Delta \text{Mn} \)) concentrations in regions far away from sources such as deep parts of the Canada Basin. We initialized the sinking rate in our model as 0.4 m d\(^{-1}\) based on a sinking rate derived by Roy-Barman (2009) from modeled and measured \(^{230}\)Th profiles in the interior of the Arctic Ocean. With a sinking rate of 0.4 m d\(^{-1}\), the deep oMn concentrations in the Canada Basin in the model were underestimated. An increased sinking rate of 0.6 m d\(^{-1}\) gave reasonable background oMn concentrations. The
global model of Mn uses a sinking rate of 1 m d$^{-1}$ up to 10 m d$^{-1}$ to account for loss near hydrothermal vents (Van Hulten et al., 2017).

Our sediment resuspension parameterization incorporates two tuned parameters: The tidal erosion rate constant, C, and solubility parameter, $γ$. The tidal erosion rate controls the background (below about 100 m) and near-bottom dMn concentrations in shelf areas, so in our domain it is predominantly in the CAA. With observed dMn profiles in the CAA, we assessed the tidal erosion constant that best represented dMn in the lower water column with multiple test model runs. The solubility parameter limits the sediment resuspension rate in shelf regions with high tidal speeds, and the most appropriate value was estimated mainly based on comparing modeled dMn with observations at stations CAA6 and CAA9 (characterized by strong tidal speeds). The resultant sediment resuspension rates in our model range from 0 to 2808 g m$^{-2}$ yr$^{-1}$ (median of regions with resuspension is 58 g m$^{-2}$ yr$^{-1}$). Particulate material collected in sediment traps over the Beaufort Shelf from spring 1987 to 1988 contained total dry weight particle fluxes associated with terrigenous input ranging from 10 to 80 g m$^{-2}$ yr$^{-1}$ (O’Brien et al., 2006).

The largest particle fluxes occurred during the summer and fall. Our median-tuned sediment resuspension rate falls within this range.

We tuned the sediment content in sea ice last, as it is the most important parameter in our study. This parameter affects the surface dMn concentrations primarily in the Canada Basin where sea ice contains a significant proportion of non-local sediments (Figure 4). We assessed the representation of surface dMn concentrations at stations in the Canada Basin after a few years of spin-up using several values of the sediment content in ice parameter. The chosen sediment content in sea ice in the Canada Basin in our model ranges from 0 to 267 g m$^{-3}$ (median is 28 g m$^{-3}$ and average is 64 g m$^{-3}$). In observations, the sediment load ranges by several orders of magnitude depending on the location sampled, the type of ice, and is highly variable year-to-year (see Table S1 in Supporting Information S1 for a non-comprehensive list of observed sediment content). In the Beaufort Sea, the observed sediment content in ice cores ranged from 31 to 593 g m$^{-3}$ with an average of 157 g m$^{-3}$ (Reimnitz et al., 1993). Our tuned ice sediment content is smaller but of a similar order of magnitude.

2.4. Experimental Design

Three numerical experiments were performed with the Mn model, running from 2002 to 2019: The reference and “clean” sea ice cases, and a sensitivity experiment for the rivers. An additional experiment was performed from 2002 to 2015 to assess the magnitude of the impact of biological uptake and remineralization. The reference run includes all model components except uptake and remineralization and uses a lower bound estimate of the river contributions (no particle-bound Mn, $β = 0$ in Equation 3). The clean sea ice case is the same as the reference run, except that the sea ice does not contain sediment (i.e., $S_{sed\ ice} = 0$). In order to bound the riverine influence, we perform a sensitivity experiment with a distinctly upper bound riverine estimate ($β = 1$ in Equation 3), compared to the lower bound estimate from the reference run. The treatment of riverine Mn introduces uncertainties in the model due to the complex estuarine cycling and the influence of particulate matter on dissolved Mn concentrations. In the “upper bound” river experiment, we include the contribution from riverine sediments on the Mn concentrations in addition to the dissolved Mn. Each experiment is spun up by repeating the year 2002 three times, before starting the full run. The run is considered spun up when the year-to-year change in Mn profiles is minimal (Figure S11 in Supporting Information S1).

3. Results

Mn profiles throughout our domain are typical for a scavenged type element: Concentrations are higher near sources with a low and homogeneous background (Figure 5). The background concentrations are controlled by scavenging, sinking, advection and mixing, and the resultant redistribution of materials throughout the water column, while the surface Mn maximum is a result of the contributions from river runoff, sea ice melt, dust deposition, photoreduction, and sediment that is resuspended directly into the polar mixed layer. Sediment resuspension leads to near-bottom increases in some regions.
3.1. Model Evaluation

We evaluate the Mn model by comparing simulated dissolved Mn concentrations during August–September 2009 and 2015 from the reference experiment with measurements collected by the IPY and Canadian GEOTRACES cruises during those time periods (Sim, 2018; Colombo et al., 2020, Figures 5–9). We also show mean polar mixed layer dMn concentrations alongside observations from the 2015 US GEOTRACES GN01 section (Figure 9a; GEOTRACES Intermediate Data Product Group, 2021; Jensen et al., 2020). We do not focus on particulate Mn as it is only incorporated into the model to estimate the scavenging of dMn. Nevertheless, modeled dMn displays the observed variability in the upper 100 m in the CAA well in 2015 (Figure S12 in Supporting Information S1). Overall, our intention is not to replicate the observations but to incorporate all the processes that control Mn distributions and to capture observed spatial variation. The observations were not used in initial conditions or boundary conditions to allow for an independent evaluation.

The model captures the regional variation of Mn concentrations along a transect from the deeper Canada Basin into the shallow CAA (Figure 6). Observed surface concentrations range from 5 to 10 nM in the Canada Basin and on the Beaufort Shelf, up to 10–11 nM at CB1, CAA8, and CAA9, and around 5 nM in the rest of the CAA (Figures 5 and 6). The representation of the Canada Basin and the Beaufort shelf surface is variable and dependent on the specific patterns of sea ice melt and the Pacific water inflow. Overall, the model does well in the southern Canada Basin and on the Beaufort Shelf (Figure 9a). In the central Canada Basin, modeled concentrations are lower than observed; a reflection of the lower sediment content in the model sea ice forcing in this portion of the Canada Basin (Figure S7 in Supporting Information S1). Along the western domain boundary and on the Beaufort shelf, inflow of Pacific water increases Mn concentrations in the model and observations (Figures 9a and Figure S2 in Supporting Information S1). Surface concentrations are overestimated at L2, L1, and CB2 and underestimated at S4 on the Beaufort shelf and at stations CB4, CB1, and CAA8 in the western CAA, which receive outflow from the Canada Basin (Figure 5). Within the CAA, surface concentrations are overestimated at stations CAA1 and CAA2 in Lancaster Sound where waters from Baffin Bay recirculate, while on the south side of the Channel at CAA3, the model captures the surface concentrations (Figure 5). Background concentrations in the model and observations are low (0–2 nM) in the Canada Basin (0–900 km along the transect in Figure 6) and increase (to 1–4 nM) as the waters travel through the shelf areas of the CAA.
Within Parry Channel, background concentrations west of Barrow Sill are around 1–2 nM, similar to the Canada Basin, while in the eastern CAA they increase to 3–5 nM with near-bottom maxima (appear as a slight bend in the modeled Mn profiles in Figures 5 and 6). Background concentrations in shallow regions are set by the sediment resuspension rate that increases concentrations up to where the surface stratification limits vertical mixing, while within the polar mixed layer concentrations are set by surface sources. At depths of 40–100 m in the CAA, just below the polar mixed layer, the model underestimates Mn. Within this depth range, Mn is remineralized, acting as a source that is not considered in the reference experiment. In the biological experiment, we estimate that remineralization accounts for up to 0.3 nM (Figure S19 and Text S3 in Supporting Information S1). At 100–200 m depth in the Canada Basin and on the Beaufort shelf, observed Mn concentrations are slightly higher than the background concentrations. This increase is associated with the winter Bering Sea water and is not captured by the model, as it was not represented in the model’s western boundary condition.

The net effect of sediment resuspension is well-represented in the background concentrations; however, there are a couple of unusual modeled near-bottom Mn profiles (Figure 5). At station CAA9 in Penny Strait, the Mn model overestimates background and bottom concentrations by 5 nM. At this station, strong mixing results in constant, “vertical” observed Mn profiles (Hughes et al., 2018). Sediment resuspension, based on tidal stress, dominates as a source of Mn to this region. However, this version of the physical model does not incorporate tides. Hence, we add Mn at the bottom, proportional to the strength of tidal stress, without redistributing it due to tidal mixing. At stations CAA2 and CAA7, on the south side of Parry Channel, observed Mn concentrations increase up to 10 nM near the ocean bottom. These peaks in the observations are attributed to sediment resuspension (Colombo et al., 2020), although the specific mechanism for the strong peak is unclear. The model does not reproduce these local extreme increases, which likely vary on much smaller spatial scales than our parameterizations can resolve. An increase in Mn over 40 m above the bottom is reproduced by the model at stations CAA2, CAA4, CAA5, and CAA7.

While the model is limited in its representation of regions with strongly variable resuspension rates, it performs well within a range of environments: From deep regions in the Canada Basin to shallow areas in the CAA. The model is configured to ask questions about the drivers of Mn variability. It is important to keep in mind that our parameterizations are limited by the spatial and temporal resolution of available information; small scale variations are unlikely to be captured by the model.
3.2. Importance of Sediment in Sea Ice

In order to evaluate the importance of sea ice and rivers on the representation of Mn in the upper water column (above 50 m), we compare the results of the “clean” sea ice and upper bound river experiments with the reference experiment (Figure 7). For all experiments, the representation of surface concentrations has a broad spread. The “clean” sea ice experiment underestimates concentrations in the upper water column by several nM (Figure 7a) and its mean underestimates concentrations by 4 nM. The mean of the reference run, with sediment in sea ice, falls within 1 nM of observed concentrations. The upper bound river experiment slightly increases the surface concentrations relative to the reference experiment, particularly in the eastern CAA (Figure 7b). Estimates for stations in the Canada Basin are unaffected by the addition of particulate matter in rivers.

We expect substantial vertical gradients in concentrations in the surface layer in the Arctic Ocean as a result of the strong stratification. It is difficult to assess the uppermost modeled concentrations as the shallowest observations are collected at around 10 m below the surface, while the shallowest model estimate is at 0.5 m depth. However, the Mn-salinity relationship in the model is similar to the observations for the experiment with sediment in sea ice (Figure S13 in Supporting Information S1). In the “clean” sea ice experiment, the model significantly underestimates the low-salinity Mn endmember.

3.3. Contributions From External Sources of Mn

To assess the relative contributions of each of the external Mn sources, we calculated the annual contribution and flux from these model components in the reference experiment. Our estimate is for the upper 55 m of the water column as we are most interested in the surface layer. An estimate of the full water column differs by including the effects of resuspension in regions deeper than 55 m, thus increasing the importance of resuspension (Table S2 in Supporting Information S1). We include estimates from the upper bound river experiment, which does not account for any removal of particulate or dissolved Mn in estuaries, as ranges in the text. We did not include the contributions from (photo) reduction and remineralization as sources of dMn in these calculations since they are part of the internal cycling of Mn. In order to identify regional differences, we separated the domain into the Canada Basin and the Canadian Arctic Archipelago (details in Figure S14 in Supporting Information S1) and subdivided the CAA into west and east along 100°W. Overall, the Canada Basin is more isolated and receives a lower annual contribution of Mn than the CAA: 238–254 versus 370–530 μmol m⁻² yr⁻¹ (Table 2).
In our model, the dominant source of Mn in the Canada Basin is the release of sediment by sea ice melt (Table 2); it accounts for 87%–93% of the average yearly addition of Mn. The amount of melt fluctuates interannually, similar to sea ice area changes observed with satellite data. Nevertheless, from 2002 to 2019, sea ice melt is consistently the largest contributor of Mn in our model in the Canada Basin. Sediment resuspension contributes about 4.4%–4.7% in the Canada Basin, mainly over the Beaufort shelf, and river discharge, predominantly from the Mackenzie River, contributes 2.2%–8.5%. Atmospheric dust deposited onto the ocean surface, or released during sea ice melt, is not a significant source of Mn anywhere in the domain.

In the CAA, sediment resuspension contributes 40%–58% of the annual external addition of Mn to the water column (Table 2). Sediment release by sea ice accounts for 26%–37% of Mn; a combination of relatively “clean” sea ice with high melt rates. The river contributions cover a broader range from 5.0% to 34% in the CAA, compared to 2.2%–8.5% in the Canada Basin. Since the total annual Mn addition is greater in the CAA, rivers contribute significantly more dMn to the CAA. Although the Canada Basin receives runoff from the Mackenzie River, the CAA has many rivers of a range of sizes that drain into it, including glacial rivers with high characteristic Mn concentrations.

Within the CAA, there is a significant difference in dynamical regime west and east of the approximately 120 m deep Barrow Sill (Table 3; Colombo et al., 2020, 2021; Hughes et al., 2017; Q. Wang et al., 2012). The overall contribution of Mn to the water column in the eastern CAA is 424–686 μmol m⁻² yr⁻¹, compared to 297–318 μmol m⁻² yr⁻¹ in the west. The main contributor to this difference is the 1.6 times stronger sediment resuspension in the eastern CAA. In addition, rivers contribute more strongly to the eastern CAA relative to the western CAA, 6.5%–42% versus 2.2%–8.7%, with a broader range in the estimate of their role in the eastern CAA. The eastern CAA receives contributions from the high Mn content glacial rivers that drain Greenland, Ellesmere Island, and Baffin Island.

Throughout our domain, Mn concentrations are highest in the summer months as a result of seasonally fluctuating components (Figures 8a and 9). Sea ice melt is largest in July, while the river runoff peak occurs during the freshet in May-June. Due to the large supply of dissolved Mn in the summer months and the increased solar flux, (photo) reduction and oxidation are stronger from July through September. For the month of September, we identified which component on average controls Mn for each horizontal grid cell over the full time series (Figure 8b). Note that this figure shows where the model adds the contribution from a component; where the Mn ends up depends on the advection and diffusion of the tracer as well.

Within the Canada Basin and portions of the western CAA (the Amundsen Gulf and western Parry Channel), sea ice melt controls the simulated Mn concentrations (Figure 8b). In the interior of the Beaufort Gyre region, far away from sources and with relatively “clean” sea ice, none of the components contribute significantly. Over the Beaufort Shelf, the Mackenzie River is a regionally important source of Mn; generally river runoff is a significant source at river mouths. In the shallower shelf regions, such as the Beaufort Shelf and the CAA, sediment resuspension is prevalent.

<table>
<thead>
<tr>
<th>Component contribution</th>
<th>Canada Basin</th>
<th>Canadian Arctic Archipelago</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μmol m⁻² yr⁻¹</td>
<td>%</td>
</tr>
<tr>
<td>River discharge</td>
<td>5.3 (22)</td>
<td>2.2 (8.5)</td>
</tr>
<tr>
<td>Sediment resuspension</td>
<td>11</td>
<td>4.7 (4.4)</td>
</tr>
<tr>
<td>Sediment from sea ice</td>
<td>221</td>
<td>93 (87)</td>
</tr>
<tr>
<td>Dust released by sea ice</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Direct dust deposition</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>238 (254)</td>
<td>100</td>
</tr>
</tbody>
</table>

*Calculated as the spatial average annual dissolved Mn contributed by external model source components to the upper 55 m of the water column (μmol m⁻² yr⁻¹) in the reference experiment, averaged over the years 2002–2019, separated by region (Figure S14 in Supporting Information S1). Sediment release by sea ice is the only component that varies significantly year-to-year. Estimates from the upper bound river experiment are indicated in parentheses.
The magnitudes of annual Mn fluxes from sources in this Arctic Model (AM; Table 2) are comparable to those in the first global model of Mn by Van Hulten et al. (2017) (VH). In VH, dust contributes 0–2 μmol m\(^{-2}\) yr\(^{-1}\) in the Arctic Ocean, whereas in AM it ranged from 0 to 0.3 μmol m\(^{-2}\) yr\(^{-1}\) (combining direct dust deposition from the atmosphere and indirect release from ice). AM riverine fluxes were 5.3–22 μmol m\(^{-2}\) yr\(^{-1}\) in the Canada Basin and 19–178 μmol m\(^{-2}\) yr\(^{-1}\) in the CAA, higher than the VH estimate of 0–2 μmol m\(^{-2}\) yr\(^{-1}\). This range likely reflects a combination of the high Mn content of rivers in the Arctic (Colombo et al., 2019) and alternate treatment of rivers; VH assumes a relation between Fe and Mn content, while AM uses observations specific to the Arctic rivers and their catchment basins. In VH, the flux of Mn from bottom sediments in the Arctic Ocean was 5–75 μmol m\(^{-2}\) yr\(^{-1}\); AM has 11–213 μmol m\(^{-2}\) yr\(^{-1}\). The difference in the upper limit of the range likely reflects the distinctive processes considered by the models: The global model considers sediment diffusion for the flux from sediments, whereas AM considers sediment resuspension because it is more important in the CAA (Colombo et al., 2020). It is also challenging to resolve the large continental shelf regions in the Canadian Arctic in a global model. Lastly, on a global scale, hydrothermal input of Mn at spreading ridges is important (Van Hulten et al., 2017); however, we did not include this contribution because the spreading ridges in the Arctic are far away from the AM domain.

Table 3

<table>
<thead>
<tr>
<th>Component contribution</th>
<th>Western CAA</th>
<th></th>
<th>Eastern CAA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μmol m(^{-2}) yr(^{-1})</td>
<td>%</td>
<td>μmol m(^{-2}) yr(^{-1})</td>
<td>%</td>
</tr>
<tr>
<td>River discharge</td>
<td>6.5 (28)</td>
<td>2.2 (8.7)</td>
<td>27 (289)</td>
<td>6.5 (42)</td>
</tr>
<tr>
<td>Sediment resuspension</td>
<td>155</td>
<td>52 (49)</td>
<td>256</td>
<td>61 (37)</td>
</tr>
<tr>
<td>Sediment from sea ice</td>
<td>136</td>
<td>46 (43)</td>
<td>140</td>
<td>33 (20)</td>
</tr>
<tr>
<td>Dust released by sea ice</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Direct dust deposition</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>297 (318)</td>
<td>100</td>
<td>424 (686)</td>
<td>100</td>
</tr>
</tbody>
</table>

*Same as Table 2, except the Canadian Arctic Archipelago (CAA) was subdivided into western and eastern halves along 100°W (near Barrow Sill).

Figure 8. Sediment released by sea ice dominates Manganese (Mn) contributions in the Canada Basin and peaks in July, while sediment resuspension is prevalent over shelf areas including the Canadian Arctic Archipelago. (a) Climatology of the seasonal cycle of Mn contributions for the full water column. The oxidation (removal) and reduction (addition) of Mn through scavenging are calculated as the average through the water column. Sediment resuspension is added at the bottom grid cell, while all other sources act directly on the ocean surface. The contributions from dust deposition and release from ice are too small to appear. (b) Most important Mn contributors to the water column in September based on climatology. At each grid cell, the color represents the most important model forcing component. Places within the model domain where the net contributions are smaller than 0.5 μmol m\(^{-2}\) mo\(^{-1}\) are white (i.e., in the Canada Basin).
Simulated Surficial Mn During the Summer and the Polar Night

The most significant seasonal and interannual changes in Mn concentrations occur in the polar mixed layer, defined here as the upper 35 m of the water column. For the following characterizations of the simulated concentrations, we will focus on this layer. The upper few meters of the ocean have a strong gradient in Mn concentrations (simulated profile in Figure S15 in Supporting Information S1). It is not possible to measure this layer with conventional methods from a large ship. As such, we exclude the surface 3 m in the results presented here (see Figure S16 in Supporting Information S1 for the surface Mn field) to allow for more direct comparison with existing observations.

Figure 9. Simulated monthly Manganese (Mn) concentrations in the Polar Mixed Layer, excluding the surface three meters to allow for direct comparison with observations (surface fields in Figure S16 in Supporting Information S1). (a) August 2015. Markers indicate Polar Mixed Layer dissolved Mn observations from the 2009 GIPY14 and 2015 GEOTRACES GN01, GN02, and GN03 cruises. In the summer, sea ice melt and sediment resuspension dominate the Mn concentrations in the Canada Basin and the Canadian Arctic Archipelago, while freshwater sources such as the Mackenzie River and Greenland meltwater are important regionally. (b) January 2015. During the Polar night, simulated Mn concentrations are homogeneous and low; however, sediment resuspension continues to drive higher concentrations in the south-central Canadian Arctic Archipelago.

3.4. Simulated Surficial Mn During the Summer and the Polar Night

The most significant seasonal and interannual changes in Mn concentrations occur in the polar mixed layer, defined here as the upper 35 m of the water column. For the following characterizations of the simulated concentrations, we will focus on this layer. The upper few meters of the ocean have a strong gradient in Mn concentrations (simulated profile in Figure S15 in Supporting Information S1). It is not possible to measure this layer with conventional methods from a large ship. As such, we exclude the surface 3 m in the results presented here (see Figure S16 in Supporting Information S1 for the surface Mn field) to allow for more direct comparison with existing observations.
During summer months, surface Mn concentrations in the Canada Basin mirror the areas of strong sea ice melt and higher sediment content, forming a seasonal Mn maximum (Figure 9a and Figure S7 in Supporting Information S1). Nearby the western and northern Canada Basin domain boundaries, Pacific water and transpolar drift water can increase Mn concentrations (Figure 9a, Figures S2, and S4 in Supporting Information S1). The highest modeled Mn values are found along the outer edges of the Beaufort Gyre (up to 14 nM). Although rivers contribute only a few percent annually to Mn in the Canada Basin (Table 2), over the continental shelf, plumes of higher Mn concentrations extend along coastlines in the summer, starting during the spring freshet (Figures 8b and 9a). The plume from the Mackenzie River, the largest river in our domain, extends eastward along the shelf in August 2015. Glacial drainage is apparent in surface Mn concentrations in a number of coastal regions (Figure 9a). Along the coast of Greenland, high concentration Mn runoff drains the ice sheet and a number of plumes extend from Nares Strait. In the northern CAA, higher surface concentrations result from a combination of sea ice melt and glacial runoff (Figure 8b). Mn from the Pacific water inflow via the western model boundary influences the Beaufort Shelf but does not significantly affect surface concentrations in the Parry Channel (Text S1 and Figure S2 in Supporting Information S1).

Mn concentrations exhibit spatial variability within the CAA (Figure 9). In west-central CAA, concentrations are low (2–6 nM) and homogeneous. Southern regions, including the Gulf of Boothia, have some of the highest concentrations (8–14+ nM) and flow into the Parry Channel east of Barrow Sill. In this section of central and eastern Parry Channel (and Penny Strait), intermediate concentrations (4–8 nM) are present. In Lancaster Sound, the outflow from Parry Channel follows the southern half of the channel while waters from Baffin Bay (5–8 nM) recirculate along the northern half of Lancaster Sound. Baffin Bay is characterized by lower interior surface concentrations and higher bands associated with Nares Strait and Lancaster Sound outflow.

During the Polar Night, fewer sources contribute Mn (Figure 8a) and there is less spatial contrast in surface concentrations (Figure 9b). Surface concentrations typically range from 1 to 5 nM, while in the summer they ranged up to 14 nM. The surface Mn maximum is seasonal; by winter, scavenging has removed the relic of summer surface source signatures. Regions where Mn is most impacted by sediment resuspension (Figure 8b), such as the Gulf of Boothia, still have high concentrations in the winter as this component does not vary seasonally.

4. Discussion

In the Arctic Ocean, maximum Mn concentrations occur near the surface in the polar mixed layer and are attributed to freshwater sources such as river discharge and sea ice melt (Campbell & Yeats, 1982; Colombo et al., 2020; Kondo et al., 2016; Middag, De Baar, Laan, & Klunder, 2011; Yeats & Westerlund, 1991). We present a regional model of Mn in the Canadian Arctic that captures the spatial variability and magnitude of observed concentrations. With results from three Mn model experiments (reference, “clean” sea ice, and upper bound river), we identified the dominance of non-local sediment released by sea ice in the Canada Basin, while rivers had a more regional importance. These findings suggest that future changes to sea ice transport across the Arctic Ocean may have a significant impact on the supply of Mn and other micronutrients to the Canada Basin and downstream to the CAA.

4.1. Ice-Rafted Sediments Are the Predominant Source of Mn in the Canada Basin

With our model, we found that 87%–93% of Mn in the Canada Basin is supplied by sediment from sea ice and 26%–37% in the CAA (Table 2). Sediments released by sea ice melt dominate the Mn concentrations in the polar mixed layer during the summer months (Figure 9a), while in the winter, sea ice blocks the direct surface input of Mn and a lower, more homogeneous distribution results (Figure 9b). Sediment transport and release by sea ice is the main source of Mn (and likely other similar nutrients) within the Canada Basin and plays a role within the CAA as well. The majority of sea ice in the interior of the Canada Basin originates from the Siberian shelf regions and traverses the Arctic Ocean via the transpolar drift (Darby, 2003; Eicken et al., 2005; T. Martin & Gerdes, 2007). It spends several years in transit, during which it undergoes freeze-thaw cycles and loses some sediment. The Chukchi Sea may also contribute sea ice to the Canada Basin via the transpolar drift (T. Martin & Gerdes, 2007). In our parameterization, the highest Mn concentrations (and relatively younger ice) are found along the outer edges of the Beaufort Gyre in the Canada Basin, while older ice transported to the interior of the
Gyre by convergence has lower Mn concentrations (Figure 9a). Sea ice formed over the Beaufort Shelf is transported toward Siberia and does not directly impact the Mn concentrations in the Canada Basin.

Mn sources from the land-ocean interface, such as rivers and sediments, were more important in the CAA than in the Canada Basin, and dynamical differences between the western and eastern CAA translated into distinctive Mn concentrations and component contribution patterns. This separation in dynamics is bounded by the 820 m deep Barrow Sill and has been noted in several studies (Colombo et al., 2020; Hughes et al., 2017). In the western CAA, surface concentrations range from 2 to 6 nM (Figure 9) and Mn component contributions share characteristics with the Canada Basin: Similar overall river contributions, significant influence from sediments in sea ice, and weaker contributions from sediment resuspension (Table 3). In contrast, in the eastern CAA, Mn concentrations are higher (4–8 nM; Figure 9), sediment resuspension associated with strong tidal speeds dominates, and river discharge plays a more important role. The estimate of the component contributions is most sensitive in the eastern CAA: The importance of rivers ranges from 6.5% to 42% depending on the treatment of particulate matter. Rivers are prevalent in the eastern CAA and in many of these drain glaciated regions associated with high suspended particulate matter and dissolved Mn. As a result, rivers have the potential to play an important role in the eastern CAA. However, the available information for river input and estuarine removal limits our ability to constrain the most likely river contribution. Based on the surface concentration comparisons (Figure 7), the upper bound river experiment alters the mean representation slightly; it is inconclusive on the most realistic representation. The uncertainties associated with these estimates highlight the need for studies on the strength of estuarine removal in the CAA.

Eurasian and North American river runoff contribute freshwater to the Arctic Ocean (Krishfield et al., 2014; Proshutinsky et al., 2019) and could contribute Mn to the surface maximum. The central Canada Basin contains significant amounts of meteoric water and sea ice melt (Guay et al., 2009) which feed its freshening (Yamamoto-Kawai et al., 2009). Several studies have looked into the composition of this water. Fichot et al. (2013) did not identify much river runoff in the central basin, and Kelly et al. (2019) found that the freshwater contribution from Siberian rivers has decreased since 1997 as a result of the mainly anticyclonic atmospheric circulation pattern over the Canada Basin. Similarly, model trajectories of floats released from Siberian rivers since 1985 do not generally reach the Canada Basin by 2007 (Proshutinsky et al., 2019). In our reference and upper boundary simulations, rivers contribute only 2.2%–8.5% to the total budget of Mn in the Canada Basin and 5.0%–34% in the CAA (Table 2). However, freshwater sources such as the Mackenzie River on the Beaufort shelf and glacial melt off the coast of Greenland (Figure 9a) are dominant near coastlines. Inflow from the central Arctic Ocean including Eurasian runoff enters our study domain through the northern model boundary (Figure 1). A sensitivity experiment with the northern boundary condition (described in Text S1 in Supporting Information S1, boundary condition shown in Figure S3 in Supporting Information S1) indicates weak impact of central Arctic Ocean inflow on dMn concentrations in the central Canada Basin (Figure S4 in Supporting Information S1). Thus, North American river runoff and inflow of Eurasian runoff from the central Arctic Ocean are unlikely to significantly contribute to the freshwater-associated surface Mn maximum in the central Canada Basin.

Nutrient rich and relatively fresh Pacific water inflow from the Bering Strait is another potential source of Mn to the freshwater surface maximum. Pacific water is transported by the Alaskan Coastal Current along the North American continental shelf. In our domain, the Alaskan Coastal Current enters through the western boundary. An experiment with enhanced Mn concentrations in the western boundary condition (Text S1 and Figure S1 in Supporting Information S1) indicates that the Pacific water surface influence is restricted to the Beaufort Shelf and does not affect the Canada Basin interior (Figure S2 in Supporting Information S1). The supply of Pacific water from Bering Strait to the Canada Basin is affected by the atmospheric circulation in the Canada Basin (Kelly et al., 2019) and floats released from Bering Strait since 2000 also did not enter the central Canada Basin by 2012 (Proshutinsky et al., 2019). It is important to note that our simulated profiles (Figure 5) do not capture the SubP increase in Mn concentrations associated with the winter Bering Sea Water layer around 100–200 m depth in the Canada Basin and on the Beaufort Shelf. This limitation is likely because our western boundary condition does not fully capture the higher concentrations of Mn found in the Alaskan Coastal Current and in waters from the Chukchi Shelf. The western boundary condition experiment (Text S1 and Figure S2 in Supporting Information S1) can also be used to identify the extent of influence of shallow reductive supply of Mn from the Chukchi shelf on our domain. The deeper winter Bering Sea Water layer is isolated from the surface through stratification and does not impact surface Mn concentrations in the Canada Basin (Colombo et al., 2020).
In order to assess whether we overestimated the sediment content of sea ice, we performed an experiment with “clean” sea ice. In the “clean” ice experiment, the surface Mn concentrations are underestimated by 4 nmol L⁻¹ relative to observations (Figure 7a). If we assume that all of the missing Mn comes from sediment and that Mn added at the surface mixes down to the turbocline, we miss a source that supplies 13–213 g of sediment per squared meter to the surface ocean across the Canada Basin (range based on model turbocline depths in 2015). The magnitude of this component is similar to the average sediment load measured in sea ice cores (Eicken et al., 2003; Reimnitz et al., 1993; Stierle & Eicken, 2002). Rivers would be unable to contribute the total amount missing since it must occur over a large area and since the upper bound river experiment shows that additional contributions from rivers do not significantly affect the Canada Basin or the overall surface representation (Figures 7b and Table 2). In the “clean” sea ice experiment, the freshwater endmember of Mn is also underestimated (Figure S13 in Supporting Information S1). The modeled Mn-salinity relationship is most similar to observations with sediment contained in sea ice and is comparable with other central Arctic Ocean observations (Middag, De Baar, Laan, & Klunder, 2011). The reference experiment also better reproduces regional differences in the Mn-salinity relationship between the Canada Basin and the CAA.

Our results demonstrate that the long-range transport of sediments by sea ice from the Siberian shelves is an important source of Mn in the Canada Basin and the Canadian Arctic Archipelago. These findings provide support for the sea ice trace metal transport mechanism proposed by Measures (1999). Measures (1999) found that the highest Al and Fe concentrations in the central Arctic Ocean coincided with areas with high concentrations of ice-rafted sediments, instead of river input, and so they hypothesized that transport of ice-rafted sediments and the subsequent seasonal melt supplies reactive elements to the surface Arctic Ocean. However, their data set did not allow the quantification of annual fluxes of material to the central Arctic Ocean and so they were unable to quantify the exact contribution of this component to the observed trace metal concentrations.

4.2. Declining Long-Range Sea Ice Transport Could Reduce the Canada Basin and Canadian Arctic Archipelago Nutrient Supply

Based on the importance of non-local sediments transported by sea ice (particularly from the Siberian shelves), the distributions of trace metals, nutrients, and their biogeochemical cycles in the Arctic basins are likely to be significantly impacted by climate change associated reductions in sea ice. Rising oceanic and atmospheric temperatures delay the freeze-up period and induce earlier melt of sea ice (Stroeve et al., 2019). In addition, in the relatively “quiet” dynamics of the Arctic Ocean, increased mixing may bring warmer Atlantic water (or Pacific water; Kodaira et al., 2020) to the surface and further increase sea ice melt (D’Asaro & Morison, 1992; Liang & Losch, 2018). These factors may significantly reduce the amount of first-year ice that survives in the Kara Sea, East Siberian sea, and western Laptev Sea (Kruppen et al., 2019).

Studies of the transpolar ice drift indicate an increase in drift speed associated with a thinning ice cover and as a result, an increase in exchange of ice-rafter material between regions (Kipp et al., 2018; Kwok et al., 2013; Newton et al., 2017; Spreen et al., 2011). However, in recent years, summer ice extents have been small enough in the marginal ice zones that most of the ice exported from shelves melts before it enters the transpolar drift (Kruppen et al., 2019). These findings suggest a reduction in the transport of matter toward the central Arctic Ocean and Fram Strait by the transpolar ice drift.

In our study, we saw a steady increase in the Mn content of the Canada Basin polar mixed layer from 2002 to 2019 (Figure 10), and the primary source of this Mn is sea ice melt (correlation R-squared of 0.97). Note that our experiments do not account for interannual changes in sea ice supply regions. The addition of Mn by melt in our model mirrors satellite observations of sea ice loss in the Beaufort Sea (Figure 10; correlation R-squared of 0.54). Whereas in the short term, there may be an increase in nutrients supplied by sea ice into the Canada Basin through increased sea ice exchange and melt volume, in the long run, we expect a decrease in supply of sediment rich sea ice from the Siberian shelves via the transpolar drift and a subsequent decline in the surface maximum of Mn in the Canada Basin. Confounding this is the likely increase in transport of riverine and shelf-derived trace elements in the ocean by the transpolar drift as a result of an intensification of the Arctic hydrological cycle and permafrost degradation (Charette et al., 2020).

A reduction in micronutrient supply to the Canada Basin may also have an impact downstream in Baffin Bay. With our experiments, we calculated the transport of Mn through Parry Channel and the contribution of sediment
released by sea ice melt to this transport (see Text S4 in Supporting Information S1 for details). About 87% of the net Mn transported into Parry Channel from the Canada Basin is contributed by sediments from sea ice and the rest is associated with other sources such as resuspension and runoff (Figure S17 and S18 in Supporting Information S1). Sea ice contributes around 34% of net Mn transported from Parry Channel into Baffin Bay. The reduction in the contribution of these components does not indicate loss in the CAA; it reflects the additional contributions from other sources (mainly sediment resuspension) in the CAA. The sea ice contribution in the water column is significant downstream. However, it is important to note that the sea ice transport in the CAA in the ocean-ice model is stronger than observed due to the lack of a land-fast ice parameterization (Grivault et al., 2018). As a result, we may overestimate the sea ice transport and thus melt in Parry Channel, particularly for the outflow from Parry Channel into Baffin Bay. There are also further factors contributing Mn within the CAA which confound this finding. The acceleration of the hydrological cycle and permafrost thaw may increase the contributions of riverine Mn to the CAA; our experiments do not take these changes into account. On the other hand, sea ice melt is associated with an increase in stratification which may reduce the depth up to which resuspended sediment can mix, reducing the Mn supplied into the upper water column (and productive areas) by sediment resuspension in the CAA. However, reduced sea ice cover is also associated with increased wind-driven mixing.

Our findings for Mn in the Arctic have implications for nutrients that share similar sources. In the Arctic Ocean, iron (Fe) behaves similarly to Mn, although Fe is less soluble than Mn and oxidizes more rapidly (Colombo et al., 2020; Jensen et al., 2020; Landing & Bruland, 1987, for a comprehensive discussion). Fe is an essential micronutrient and it limits primary productivity in some regions of the ocean, such as the Southern Ocean, parts of the North Atlantic, and the Pacific Northwest (Hawkings et al., 2014; J. H. Martin & Gordon, 1988; Tagliabue et al., 2017). Generally, iron is not growth limiting in the Arctic (S. Wang et al., 2014), but there is evidence that Fe is limited in specific regions: On the outer shelf and shelf break in the Bering Sea (Aguilar-Islas et al., 2008), as well as in the Barents Sea and Nansen Basin (Rijkenberg et al., 2018). Past studies have indicated that sea ice contributes to the flux of Fe into the ocean (Aguilar-Islas et al., 2008; Kanna et al., 2020; Lannuzel et al., 2007; Measures, 1999). Based on the expected changes to the Mn cycle and supply with sea ice melt over the next decades, the supply of Fe to the Canada Basin may be reduced as well. Meanwhile, the increase in simulated Mn content in the Canada Basin from 2002 to 2019 due to sea ice melt may also have supplied micronutrients such as Fe and have driven some of the observed increased Arctic Ocean primary production (Lewis et al., 2020). Changes to Fe availability impact the community composition and the timing of the spring phytoplankton bloom

Figure 10. Interannual variations in sea ice melt contribute strongly to Manganese (Mn) supply to the Canada Basin. Conversely, surface Mn concentration changes in the Canada Basin are an indicator of the volume of sediments released by sea ice melt. Sea ice loss is calculated from regional monthly sea ice area changes in the Beaufort Sea measured by the Defense Meteorological Satellite Program series of passive microwave remote sensing instruments (Fetterer et al., 2017). The regional Mn model presented in this study is used to calculate Mn added by sea ice melt and the total Mn content of the Canada Basin.
(Aguilar-Islas et al., 2008), which in turn has consequences for biological productivity, Arctic ecosystems, and the carbon cycle.

4.3. Limitations of Results

4.3.1. Mn Model Evaluation

The upper 100 m of the water column is most important to the key findings of this study. In this zone, the Mn representation is impacted by local sources, photo-enhanced reduction, and the physical model’s salinity representation and associated mixing. Below, we discuss differences between the model and observations and identify the impacts on our findings.

In the CAA, the model underestimates Mn in the subsurface (upper 50 m) resulting in a strong vertical gradient of Mn, particularly in the central sills region. The physical model represents salinity well within the CAA; however, the upper 20 m are slightly too fresh, possibly because of an overestimate in the freshwater transport due to too-mobile sea ice without a land-fast sea ice parameterization (Grivault et al., 2018). Despite this, the Mn-salinity relationship matches observations closely in the reference experiment (Figure S13 in Supporting Information S1). Increased photo-enhanced reduction could increase subsurface Mn. However, trials with a nonlinear coupling between light penetration and sea ice concentration did not significantly affect the subsurface Mn concentrations. Further, while Mn oxides (oMn) are only modeled for their impact on dMn, oMn concentrations are fairly well-represented within the upper water column in the CAA (Figure S12 in Supporting Information S1). Remineralization of Mn taken up by phytoplankton may also counteract some of the subsurface underestimation. However, we estimated that uptake and remineralization altered dissolved Mn profiles by only up to 0.3 nM (Figure S19 and Text S3 in Supporting Information S1). Hence, we suggest that the subsurface Mn underestimation is most likely caused by improper distribution of materials in the upper water column from weaker mixing. Replicating the effect of stronger mixing by redistributing the Mn, the average Mn concentrations are underestimated by 1 nM in the upper 50 m, while in the subsurface alone they are underestimated by 3 nM. A similar argument can be made for the near-bottom overestimation of Mn at CAA9, a region known to have strong tidal mixing. If we redistribute the Mn throughout the water column, the modeled concentration is overestimated by 2 nM, compared to 5 nM for the lower water column alone.

In the Canada Basin, the physical model captures the depth of isohalines reasonably well; however, the amount of freshwater in the upper water column is underestimated (Hu et al., 2019). This underestimation may be due to a lower freshwater state in the initial conditions derived from the GLORYS2v3 product but can more likely be attributed to overestimated sea ice concentration and thickness (and underestimated melt in the model). Despite this, the model represents the overall circulation and characteristics of the Canada Basin. For Mn, this shortcoming complicates the evaluation of the Mn-salinity relationship in the Canada Basin (Figure S13 in Supporting Information S1) and instead, we focused our evaluation on Mn with depth (Figure 5). The underestimation of sea ice melt does not change the actual component contributions estimated by the Mn model: The net effect of the sea ice component is a combination of ice melt and sediment content. An increase in ice melt would be counterbalanced by a decrease in sediment richness. The exact spatial variability and content of sediment in sea ice of the forcing field is a rough first order estimate, nevertheless it is able to provide us with an estimate of the magnitude of the sediment in sea ice component.

4.3.2. Parameterizations

The findings in this study are limited by the parameterizations for scavenging, sediment in sea ice, sediment resuspension, and river runoff. Overall, the model is best constrained for summer months, the southern CAA, and the Canada Basin due to the availability of observations. Scavenging rates are important throughout the water column and are most likely to affect our results in coastal regions. We assumed steady state to estimate the adsorption and desorption rates from observations; this assumption is least likely to hold in coastal regions and near the surface where scavenging rates are both important and variable. The oxidation rate was derived from observations specific to the Arctic Ocean environment and is faster than the rate used in Van Hulten et al. (2017). The comparison of the modeled and observed oMn profiles (Figure S12 in Supporting Information S1) suggests that the scavenging rates used in this study are representative. However, the scavenging rates are expected to vary spatially and vertically due to variations in Mn oxidizing microbial communities and environmental conditions. No data are currently available to represent these effects. For the sediment released by sea ice, we did not account
for variations in transport of sediment (and its origin) across the Arctic Ocean over the course of the time series.

Sea ice drift patterns vary interannually and so could the source regions for sediment transported to the Canada Basin by sea ice. The sediment content would more accurately be represented as a time dependent variable. The total Mn content in the Canada Basin would increase (decrease) with a higher (lower) sediment content in sea ice, while sediment in sea ice would be more (less) important overall. However, observed sediment sea ice loads range several orders of magnitude by location sampled and properties of the ice, and these fluctuations make it challenging to quantify annual changes in overall sediment content and path traveled. Similarly, sediment resuspension varies interannually and seasonally and may be better represented as a time dependent variable.

We do not take into account the contributions from breaking of internal waves, storm generated currents, and surface waves on sediment resuspension and coastal erosion. As a result, we likely underestimate sediment resuspension contributions in some areas, particularly during the summer ice-free period. Our treatment of rivers was simplistic and did not account for the complexity of transformations that occur in the estuarine zone. Our results indicate a lower and upper bound of the river contributions; however, we are unable to indicate what the actual contribution is. The upper bound river experiment also indicates the effect of higher characteristic riverine Mn concentrations, such as if we had used Eurasian river Mn content within our domain instead of river observations from the CAA. We did not account for the projected seasonal ranges in riverine Mn concentrations with discharge (Colombo et al., 2019); the river discharge varies seasonally, but we hold the characteristic Mn concentrations of the rivers constant. This approximation could underestimate the riverine contributions during the spring freshet in coastal areas and is most likely to impact the northern CAA and Greenland coast, where glacial rivers are most important. Recent work has suggested ligand stabilization of riverine dissolved Fe in the Arctic Ocean, increasing its extent of influence (Charette et al., 2020). However, the cycling of dMn in the Arctic Ocean is largely shaped by its redox cycling instead of organic ligand complexation (Colombo et al., 2020; Jensen et al., 2020).

While the numbers presented here should be taken as an estimate of magnitude rather than as exact values, the key results are robust to the uncertainties described above. The only way we were able to close the Mn budget (particularly in the Canada Basin) was by incorporating the sediment in sea ice component. Similarly, the only way to represent the higher concentrations of Mn found in the lower water column at some stations in the CAA was through the sediment resuspension term. While the Mn model presented here is limited in its representation of these processes, it provides a platform to ask questions about the drivers of Mn variability and to perform larger scale estimates of the processes that contribute Mn to the Arctic Ocean. Satellite-based estimates of the distribution and quantity of sediment-laden sea ice such as explored in Waga et al. (2022) could strengthen future predictions. The Mn model accuracy would be improved by more comprehensive estimates of the scavenging and sediment resuspension rates. Observations of Mn along a transect from an estuary into the ocean would help constrain the riverine contributions. Lastly, wintertime Arctic Mn observations would be helpful to evaluate the strong seasonal Mn cycle indicated by our model.

5. Conclusions

New trace metal data sets collected in the Arctic Ocean as part of the Canadian GEOTrACES program have provided an essential base for studying biogeochemical cycling in this unique region. Using in situ observations from Colombo et al. (2020), we developed the first model of Mn in the Canadian Arctic Archipelago and the Canada Basin. With three model experiments using the reference period 2002–2019, we looked at (a) the drivers of Mn distributions in the CAA and the Canada Basin and (b) implications of future sea ice transport changes on the biogeochemical cycles of nutrients in the Arctic Ocean.

1. While sediment transport by sea ice is identified as important in the Arctic Ocean (Eicken et al., 2005; Measures, 1999), this mechanism is commonly considered less significant for Mn than riverine input. However, without the contribution from sediment in sea ice to Mn, we were unable to accurately represent the Mn concentrations in the Canada Basin with our model. Sediments transported in sea ice by the transpolar drift account for up to 93% of the total annual Mn added in the Canada Basin and up to 37% in the CAA, driving Mn surface maxima. These results support the hypothesis that “ice-rafted sediment may be an important transport mechanism for supplying reactive trace elements”, proposed by Measures (1999). Rivers are certainly locally important but contribute only 2.2%–8.5% annually in the Canada Basin. Within the CAA, our
estimates for river contributions ranged from 5.0% up to 34% in the upper bound river experiment. This broad range is the result of the limited information available regarding estuarine cycling in the Arctic. A clear divide is present in the CAA: West of Barrow Sill, the mean concentrations are lower and the behavior of Mn is more similar to the Canadian Basin, while in the eastern CAA, sediments resuspended by high tidal speeds, as well as many glacial rivers drive higher Mn concentrations. Both sea ice melt and river runoff vary seasonally and this variation appears as a strong seasonal cycle in Mn concentrations in our model. Due to logistical constraints, Mn observations are typically collected during the summer in the Arctic Ocean; however, wintertime observations of Mn would be helpful to evaluate this model and improve our understanding of Mn cycling.

2. Sea ice transport via the transpolar drift is interrupted by Arctic warming (Krumpen et al., 2019) and the decline in this long-range transport could reduce the Canadian Basin and the CAA nutrient supply. These changes not only impact the Arctic but also subarctic seas, with up to 34% of the Mn transported from Parry Channel into Baffin Bay added by sea ice melt. Mn behaves similarly to Fe in the Arctic Ocean and both of these micronutrients support phytoplankton growth. The importance of sea ice for nutrient supply to the photic zone in the Canadian Basin, as well as downstream, is concerning given the recent changes in the Arctic Ocean sea ice regime (reduced summer minimum ice extent, ice thinning, reduction in multiyear ice extent, and altered drift paths). There are many competing factors that will contribute to changes in the biogeochemical cycles; combined model-observation studies are highly valuable to understand the individual contribution of these factors.

Acknowledgments
We thank Marco van Halten for openly sharing his model code and results, Jacqui-Lee Epstein for extracting the tidal speeds for the sediment resuspension parameterization, Nadja Steiner and Hakase Hayashida for sharing CanOE model results, and Genevieve Parton for helpful discussions regarding sediment resuspension. We’d also like to thank the two reviewers for their helpful comments. This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Climate Change and Atmospheric Research Grant: GEOTRACES (RGPC 433848-12) and VITALS (RGPC 433898), an NSERC Discovery Grant (RGPIN-2016-03865) to SEA, and by the University of British Columbia through a four year fellowship to BR. Computing resources were provided by Compute Canada (RRG 2648 RAC 2019, RRG 2969 RAC 2020, and RRG 1541 RAC 2021). The model configuration, code, results, and analysis code are archived on FRDR at https://doi.org/10.20383/102.0388 (Rogalla, 2022) and runs within the NEMO ocean model (https://www.nemo-ocean.eu/) version 3.6 (Madec, 2008). Analysis code is also available on Github at https://github.com/brogalla/Mn-sea-ice-paper. The dissolved and particulate Mn trace metal observations used for model development and evaluation are available as part of the GEOTRACES Intermediate Data Product 2021 via the British Oceanographic Data Centre: https://www.bodc.ac.uk/geotraces/data/idp2021/. For more details on the Arctic and Northern Hemi-

Acronyms

ANHA12 Arctic and Northern Hemispheric Atlantic 1/12°
CAA Canadian Arctic Archipelago
CAM-Chem Community Atmosphere Model with Chemistry
CESM Community Earth System Model
LIM2 Louvain-la-Neuve version 2
NEMO Nucleus for European Modeling of the Ocean
TOP Tracers in the Ocean Paradigm
TVD Total Variance Dissipation scheme

Data Availability Statement

The Mn model configuration, code, results, and analysis code are archived on FRDR at https://doi.org/10.20383/102.0388 (Rogalla, 2022) and runs within the NEMO ocean model (https://www.nemo-ocean.eu/) version 3.6 (Madec, 2008). Analysis code is also available on Github at https://github.com/brogalla/Mn-sea-ice-paper. The dissolved and particulate Mn trace metal observations used for model development and evaluation are available as part of the GEOTRACES Intermediate Data Product 2021 via the British Oceanographic Data Centre: https://www.bodc.ac.uk/geotraces/data/idp2021/. For more details on the Arctic and Northern Hemispheric Atlantic 1/12° configuration (ANHA12), visit http://knossos.eas.ualberta.ca/ana/anahatable.php. Analysis was performed using Python 3 (Van Rossum & Drake, 2009) within Jupyter Notebooks with the NumPy, Pandas, SciPy, Matplotlib, Scikit-learn, and cmocean packages (Harris et al., 2020; Hunter, 2007; Kluvyer et al., 2016; Pedregosa et al., 2011; The Pandas development team, 2020; Thynge et al., 2016; Virtanen et al., 2020; Waskom & the Seaborn development team, 2020). Particle tracking was performed within Python 3 using Ocean Parcels (Lange & Van Sebille, 2017).

References

Bamber, J., Van Den Broeke, M., Ettema, J., Lenaerts, J., & Rignot, E. (2012). Recent large increases in freshwater fluxes from Greenland into Bering Sea, and by the University of British Columbia through a four year fellowship to BR. Computing resources were provided by Compute Canada (RRG 2648 RAC 2019, RRG 2969 RAC 2020, and RRG 1541 RAC 2021). The model configuration, code, results, and analysis code are archived on FRDR at https://doi.org/10.20383/102.0388 (Rogalla, 2022) and runs within the NEMO ocean model (https://www.nemo-ocean.eu/) version 3.6 (Madec, 2008). Analysis code is also available on Github at https://github.com/brogalla/Mn-sea-ice-paper. The dissolved and particulate Mn trace metal observations used for model development and evaluation are available as part of the GEOTRACES Intermediate Data Product 2021 via the British Oceanographic Data Centre: https://www.bodc.ac.uk/geotraces/data/idp2021/. For more details on the Arctic and Northern Hemispheric Atlantic 1/12° configuration (ANHA12), visit http://knossos.eas.ualberta.ca/ana/anahatable.php. Analysis was performed using Python 3 (Van Rossum & Drake, 2009) within Jupyter Notebooks with the NumPy, Pandas, SciPy, Matplotlib, Scikit-learn, and cmocean packages (Harris et al., 2020; Hunter, 2007; Kluvyer et al., 2016; Pedregosa et al., 2011; The Pandas development team, 2020; Thynge et al., 2016; Virtanen et al., 2020; Waskom & the Seaborn development team, 2020). Particle tracking was performed within Python 3 using Ocean Parcels (Lange & Van Sebille, 2017).

References From the Supporting Information

