Show simple item record

dc.contributor.authorQiu, Chunjing  Concept link
dc.contributor.authorZhu, Dan  Concept link
dc.contributor.authorCiais, Philippe  Concept link
dc.contributor.authorGuenet, Bertrand  Concept link
dc.contributor.authorKrinner, Gerhard  Concept link
dc.contributor.authorPeng, Shushi  Concept link
dc.contributor.authorAurela, Mika  Concept link
dc.contributor.authorBernhofer, Christian  Concept link
dc.contributor.authorBrümmer, Christian  Concept link
dc.contributor.authorBret-Harte, M. Syndonia  Concept link
dc.contributor.authorChu, Housen  Concept link
dc.contributor.authorChen, Jiquan  Concept link
dc.contributor.authorDesai, Ankur R.  Concept link
dc.contributor.authorDušek, Jiˇrí  Concept link
dc.contributor.authorEuskirchen, Eugenie  Concept link
dc.contributor.authorFortuniak, Krzysztof  Concept link
dc.contributor.authorFlanagan, Lawrence B.  Concept link
dc.contributor.authorFriborg, Thomas  Concept link
dc.contributor.authorGrygoruk, Mateusz  Concept link
dc.contributor.authorGogo, Sébastien  Concept link
dc.contributor.authorGrünwald, Thomas  Concept link
dc.contributor.authorHansen, Birger U.  Concept link
dc.contributor.authorHoll, David  Concept link
dc.contributor.authorHumphreys, Elyn  Concept link
dc.contributor.authorHurkuck, Miriam  Concept link
dc.contributor.authorKiely, Gerard  Concept link
dc.contributor.authorKlatt, Janina  Concept link
dc.contributor.authorKutzbach, Lars  Concept link
dc.contributor.authorLargeron, Chloé  Concept link
dc.contributor.authorLaggoun-Défarg, Fatima  Concept link
dc.contributor.authorLund, Magnus  Concept link
dc.contributor.authorLafleur, Peter M.  Concept link
dc.contributor.authorLi, Xuefei  Concept link
dc.contributor.authorMammarella, Ivan  Concept link
dc.contributor.authorMerbold, Lutz  Concept link
dc.contributor.authorNilsson, Mats B.  Concept link
dc.contributor.authorOlejnik, Janusz  Concept link
dc.contributor.authorOttosson-Löfvenius, Mikaell  Concept link
dc.contributor.authorOechel, Walter  Concept link
dc.contributor.authorParmentier, Frans-Jan W.  Concept link
dc.contributor.authorPeichl, Matthias  Concept link
dc.contributor.authorPirk, Norbert  Concept link
dc.contributor.authorPeltola, Olli  Concept link
dc.contributor.authorPawlak, Włodzimierz  Concept link
dc.contributor.authorRasse, Daniel  Concept link
dc.contributor.authorRinne, Janne  Concept link
dc.contributor.authorShaver, Gaius R.  Concept link
dc.contributor.authorSchmid, Hans Peter  Concept link
dc.contributor.authorSottocornola, Matteo  Concept link
dc.contributor.authorSteinbrecher, Rainer  Concept link
dc.contributor.authorSachs, Torsten  Concept link
dc.contributor.authorUrbaniak, Marek  Concept link
dc.contributor.authorZona, Donatella  Concept link
dc.contributor.authorZiemblinska, Klaudia  Concept link
dc.identifier.citationGeoscientific Model Development 11 (2018): 497-519en_US
dc.description© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geoscientific Model Development 11 (2018): 497-519, doi:10.5194/gmd-11-497-2018.en_US
dc.description.abstractPeatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 =  0.76; Nash–Sutcliffe modeling efficiency, MEF  =  0.76) and ecosystem respiration (ER, r2 =  0.78, MEF  =  0.75), with lesser accuracy for latent heat fluxes (LE, r2 =  0.42, MEF  =  0.14) and and net ecosystem CO2 exchange (NEE, r2 =  0.38, MEF  =  0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value.en_US
dc.description.sponsorshipThis study was supported by the European Research Council Synergy grant ERC-2013-SyG- 610028 IMBALANCE-P.en_US
dc.publisherCopernicus Publications on behalf of the European Geosciences Unionen_US
dc.rightsAttribution 4.0 International*
dc.titleORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scalesen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International