Thirty-three years of ocean benthic warming along the U.S. Northeast Continental Shelf and Slope : patterns, drivers, and ecological consequences
Date
2017-12-04Author
Kavanaugh, Maria T.
Concept link
Rheuban, Jennie E.
Concept link
Luis, Kelly M. A.
Concept link
Doney, Scott C.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/9529As published
https://doi.org/10.1002/2017JC012953DOI
10.1002/2017JC012953Abstract
The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.
Description
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 9399–9414, doi:10.1002/2017JC012953.
Collections
Suggested Citation
Journal of Geophysical Research: Oceans 122 (2017): 9399–9414The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Related items
Showing items related by title, author, creator and subject.
-
Transient structure in benthic communities : the effects of oxygen stress, burial and high rates of sedimentation
Nichols-Driscoll, Jean (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1975-04)The influence of natural short-term fluctuations in environmental parameters on three components of transient benthic invertebrate community structure: abundance of individuals and species, biomass of individuals, ... -
Benz(a)anthracene in benthic marine environments : bioavailability, metabolism, and physiological effects on the polychaete Neries virens
McElroy, Anne Elizabeth (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1985-02)The fate of [14C- 121 benz(a)anthracene (BA) was followed in benthic microcosm experiments in the presence and absence of the polychaete Nereis virens. In concert with chemical analysis of BA and its metabolites in all ... -
The distribution of benthic biomass in hadal trenches : a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor
Ichino, Matteo C.; Clark, Malcolm R.; Drazen, Jeffrey C.; Jamieson, Alan; Jones, Daniel O. B.; Martin, Adrian P.; Rowden, Ashley A.; Shank, Timothy M.; Yancey, Paul H.; Ruhl, Henry A. (Elsevier, 2015-02-19)Most of our knowledge about deep-sea habitats is limited to bathyal (200–3000 m) and abyssal depths (3000–6000 m), while relatively little is known about the hadal zone (6000–11,000 m). The basic paradigm for the distribution ...