• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Academic Programs
    • WHOI Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    The marine biogeochemistry of chromium isotopes

    Thumbnail
    View/Open
    Moos_thesis.pdf (5.030Mb)
    Date
    2018-02
    Author
    Moos, Simone B.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/9489
    DOI
    10.1575/1912/9489
    Keyword
     Ocean; Chromium; Seawater; Isotopes 
    Abstract
    In the ocean, chromium (Cr) is a redox-sensitive trace metal. The reduction of Cr(VI) to Cr(III) occurs in oxygen deficient zones (ODZs), and Cr reduction in general has been identified as a significant Cr isotope fractionation mechanism. This thesis presents the first Cr isotope variations (d53Cr) in ODZs of the ocean and adds to the sparse Cr isotope data published for modern seawater. I developed a precise and accurate Cr isotope method for seawater samples. Seawater acidification converts total Cr to Cr(III) which is preconcentrated by Mg(OH)2 coprecipitation. A three-column anion exchange chromatography scheme separates Cr from isobaric and polyatomic interferences present in the seawater and reagent matrixes. Isotope analysis is performed on a MC-ICP-MS IsoProbe. The addition of a 50Cr-54Cr double spike allows for accurate correction of procedural and instrumental Cr mass fractionations. The first Cr isotope ratio data for a full water column profile in the Pacific Ocean is presented. This station serves as a fully oxic counterpart to stations located within the ODZ of the Eastern Tropical North Pacific. At one station, Cr concentrations are lower and d53Cr values are heavier within the ODZ. This is consistent with Cr reduction resulting in isotopically lighter, particlereactive Cr(III), which is scavenged and exported from the water column. A strong correlation of d53Cr and d15NNO3- at this station suggests that Cr reduction may be microbially mediated instead of simply being a product of thermodynamic equilibrium. Alternatively, Cr may be reduced by Fe(II). In the anoxic bottom waters of the Santa Barbara Basin a strong Cr reduction signal (lower [Cr], heavier d53Cr) is observed, which may result from the same aforementioned Cr reduction mechanisms. A shift to the heaviest seawater Cr isotope signatures yet observed was detected in the oxic bottom waters of the shallow Arctic Chukchi shelf, while Cr concentrations decreased. This extreme isotope signal may result from Cr reduction by a reduced species (e.g. Fe(II)), which was released from the underlying anoxic shelf sediments. Cr in the Atlantic layer and in the bottom water of a central Arctic station appears to be shaped by a novel, unidentified process.
    Description
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2018
    Collections
    • WHOI Theses
    • Marine Chemistry and Geochemistry (MC&G)
    Suggested Citation
    Thesis: Moos, Simone B., "The marine biogeochemistry of chromium isotopes", 2018-02, DOI:10.1575/1912/9489, https://hdl.handle.net/1912/9489
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Investigating chromium cycling in global oxygen deficient zones with chromium isotopes 

      Huang, Tianyi (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2021-09)
      Chromium (Cr) isotopes have shown great potential as a paleo-redox proxy to trace the redox conditions of ancient oceans and atmosphere. However, its cycling in modern environments is poorly constrained. In my thesis, I ...
    • Thumbnail

      Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration 

      Wang, Xiangli; Planavsky, Noah J.; Reinhard, Christopher T.; Zou, Huijuan; Ague, Jay J.; Wu, Yuanbao; Gill, Benjamin C.; Schwarzenbach, Esther M.; Peucker-Ehrenbrink, Bernhard (2016-01)
      Chromium (Cr) isotopes are an emerging proxy for redox processes at Earth’s surface. However, many geological reservoirs and isotope fractionation processes are still not well understood. The purpose of this contribution ...
    • Thumbnail

      Trivalent chromium isotopes in the eastern tropical North Pacific oxygen-deficient zone 

      Huang, Tianyi; Moos, Simone B.; Boyle, Edward A. (National Academy of Sciences, 2021-02-23)
      Changes in chromium (Cr) isotope ratios due to fractionation between trivalent [Cr(III)] and hexavalent [Cr(VI)] are being utilized by geologists to infer oxygen conditions in past environments. However, there is little ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo