Reconstructing the evolution of the submarine Monterey Canyon System from Os, Nd, and Pb isotopes in hydrogenetic Fe-Mn crusts

Date
2017-11-15Author
Conrad, Tracey A.
Concept link
Nielsen, Sune G.
Concept link
Peucker-Ehrenbrink, Bernhard
Concept link
Blusztajn, Jerzy S.
Concept link
Winslow, Dustin
Concept link
Hein, James R.
Concept link
Paytan, Adina
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/9462As published
https://doi.org/10.1002/2017GC007071DOI
10.1002/2017GC007071Keyword
Ferromanganese crusts; Osmium isotopes; Neodymium isotopes; Lead isotopes; Monterey Canyon System; SeawaterAbstract
The sources of terrestrial material delivered to the California margin over the past 7 Myr were assessed using 187Os/188Os, Nd, and Pb isotopes in hydrogenetic ferromanganese crusts from three seamounts along the central and southern California margin. From 6.8 to 4.5 (±0.5) Ma, all three isotope systems show more radiogenic values at Davidson Seamount, located near the base of the Monterey Canyon System, than in Fe-Mn crusts from the more remote Taney and Hoss Seamounts. At the Taney Seamounts, approximately 225 km farther offshore from Davidson Seamount, 187Os/188Os values, but not Pb and Nd isotope ratios, also deviate from the Cenozoic seawater curve toward more radiogenic values from 6.8 to 4.5 (±0.5) Ma. However, none of the isotope systems in Fe-Mn crusts deviate from seawater at Hoss Seamount located approximately 450 km to the south. The regional gradients in isotope ratios indicate that substantial input of dissolved and particulate terrestrial material into the Monterey Canyon System is responsible for the local deviations in the seawater Nd, Pb, and Os isotope compositions from 6.8 to 4.5 (±0.5) Ma. The isotope ratios recorded in Fe-Mn crusts are consistent with a southern Sierra Nevada or western Basin and Range provenance of the terrestrial material which was delivered by rivers to the canyon. The exhumation of the modern Monterey Canyon must have begun between 10 and 6.8 ± 0.5 Ma, as indicated by our data, the age of incised strata, and paleo-location of the Monterey Canyon relative to the paleo-coastline.
Description
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 18 (2017): 3946–3963, doi:10.1002/2017GC007071.
Collections
Suggested Citation
Geochemistry, Geophysics, Geosystems 18 (2017): 3946–3963Related items
Showing items related by title, author, creator and subject.
-
Distribution of recycled crust within the upper mantle : insights from the oxygen isotope composition of MORB from the Australian-Antarctic Discordance
Cooper, Kari M.; Eiler, John M.; Sims, Kenneth W. W.; Langmuir, Charles H. (American Geophysical Union, 2009-12-03)Geochemical heterogeneity within the mantle has long been recognized through the diversity of trace element and radiogenic isotopic compositions of mantle-derived rocks, yet the specific origin, abundance, and distribution ... -
Arc–continent collision and the formation of continental crust : a new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland
Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy S.; Schouten, Hans A. (2008-06-23)Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth’s history. Magmatic evolution during this ... -
Vanadium isotope and elemental concentration analyses of numerous ferromanganese crusts and nodule samples
Owens, Jeremy D.; Nielsen, Sune G. (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2020-08-13)This vanadium isotope and elemental concentration dataset analyzes numerous ferromanganese crusts and nodule samples. For a complete list of measurements, refer to the full dataset description in the supplemental file ...