Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments

View/ Open
Date
2017-11-06Author
Spira, Felix
Concept link
Cuylen-Haering, Sara
Concept link
Mehta, Shalin B.
Concept link
Samwer, Matthias
Concept link
Reversat, Anne
Concept link
Verma, Amitabh
Concept link
Oldenbourg, Rudolf
Concept link
Sixt, Michael
Concept link
Gerlich, Daniel W.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/9402As published
https://doi.org/10.7554/eLife.30867DOI
10.7554/eLife.30867Abstract
The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings.
Description
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in eLife 6 (2017): e30867, doi:10.7554/eLife.30867.
Collections
Suggested Citation
eLife 6 (2017): e30867The following license files are associated with this item: