• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf during summer

    Thumbnail
    View/Open
    Article (4.077Mb)
    Supporting Information S1 (798.8Kb)
    Date
    2017-08-17
    Author
    Marsay, Christopher M.  Concept link
    Barrett, Pamela M.  Concept link
    McGillicuddy, Dennis J.  Concept link
    Sedwick, Peter N.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/9314
    As published
    https://doi.org/10.1002/2017JC013068
    DOI
    10.1002/2017JC013068
    Keyword
     Ross Sea; Iron; Manganese; Particles; Continental shelf 
    Abstract
    We report water column dissolved iron (dFe) and particulate iron (pFe) concentrations from 50 stations sampled across the Ross Sea during austral summer (January–February) of 2012. Concentrations of dFe and pFe were measured in each of the major Ross Sea water masses, including the Ice Shelf Water and off-shelf Circumpolar Deep Water. Despite significant lateral variations in hydrography, macronutrient depletion, and primary productivity across several different regions on the continental shelf, dFe concentrations were consistently low (<0.1 nM) in surface waters, with only a handful of stations showing elevated concentrations (0.20–0.45 nM) in areas of melting sea ice and near the Franklin Island platform. Across the study region, pFe associated with suspended biogenic material approximately doubled the inventory of bioavailable iron in surface waters. Our data reveal that the majority of the summertime iron inventory in the Ross Sea resides in dense shelf waters, with highest concentrations within 50 m of the seafloor. Higher dFe concentrations near the seafloor are accompanied by an increased contribution to pFe from authigenic and/or scavenged iron. Particulate manganese is also influenced by sediment resuspension near the seafloor but, unlike pFe, is increasingly associated with authigenic material higher in the water column. Together, these results suggest that following depletion of the dFe derived from wintertime convective mixing and sea ice melt, recycling of pFe in the upper water column plays an important role in sustaining the summertime phytoplankton bloom in the Ross Sea polynya.
    Description
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 6371–6393, doi:10.1002/2017JC013068.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Journal of Geophysical Research: Oceans 122 (2017): 6371–6393
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf 

      Fewings, Melanie R.; Lentz, Steven J.; Fredericks, Janet J. (American Meteorological Society, 2008-11)
      Six-yr-long time series of winds, waves, and water velocity from a cabled coastal observatory in 12 m of water reveal the separate dependence of the cross-shelf velocity profile on cross-shelf and along-shelf winds, waves, ...
    • Thumbnail

      Cross-shelf circulation and momentum and heat balances over the inner continental shelf near Martha's Vineyard, Massachusetts 

      Fewings, Melanie R. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2007-09)
      The water circulation and evolution of water temperature over the inner continental shelf are investigated using observations of water velocity, temperature, density, and bottom pressure; surface gravity waves; wind ...
    • Thumbnail

      The kinematics and dynamics of the New England continental shelf and shelf/slope front 

      Flagg, Charles Noel (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1977-04)
      A 37 day long field program was carried out in March 1974 on the New England continental shelf break to study the current and hydrographic structure and variability on the shelf and in the shelf/slope front. A second ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo